Các cổng logic là các khối cơ bản được sử dụng trong các hệ thống số. Các cổng logic cơ bản gồm: cổng NOT, cổng OR, cổng NOR, cổng AND, cổng NAND. Chúng được xây dựng từ nMOS và pMOS. Trong phần này chúng ta sẽ khảo sát cổng NOT, NOR và NAND vì cổng OR và cổng AND có thể được tạo ra bằng cách sử dụng thêm cổng NOT ở ngõ ra của cổng NOR và cổng NAND.
Cổng NOT
Cổng NOT thực hiện hàm logic có một ngõ vào, ngõ ra của nó là đảo của tín hiệu ngõ vào. Gọi A là ngõ vào và Y là ngõ ra thì hoạt động của hai ngõ vào cổng NOR được giải thích bởi các biểu thức logic
Bảng sự thật cổng NOT
Sơ đồ schematic và layout cổng NOT sử dụng phần mềm Cadence Virtuso. Với Vdd = 1.8 V , pMOS và nMOS có thông số:
• Chiều rộng (width):
o pMOS: Wp = 2μm.
• Chiều dài (length):
o pMOS: Lp = 180nm
o nMOS: Ln = 180nm
Khi đó điểm chuyển mạch của cổng NOT (Vtriple) là 0.86 V gần bằng điện thế Vdd/2. Ta cũng sử dụng tỉ lệ này cho các cổng Logic còn lại.
Hình4. 4 Schematic cổng NOT
Hình4. 9 Vtriple của cổng NOT
Cổng NOR
Cổng NOR thực hiện hàm logic có hai hay nhiều ngõ vào. Gọi A, B là các ngõ vào và Y là ngõ ra. Thì hoạt động của hai ngõ vào cổng NOR được giải thích bởi các biểu thức logic
Y = A NOR B hay Bảng sự thật cổng NOR : A B Y 0 0 1 0 1 0 1 0 0 1 1 0
Hình4. 10 Schematic cổng NOR
Hình4. 12 Simulation cổng NOR
Hình4. 14 Kết quả check LVS cổng NOR
Cổng NAND
Cổng NAND thực hiện hàm logic có hai hay nhiều ngõ vào. Gọi A, B là các ngõ vào và Y là ngõ ra. Thì hoạt động của hai ngõ vào cổng NAND được giải thích bởi các biểu thức logic
Bảng sự thật cổng NAND: A B Y 0 0 1 0 1 1 1 0 1 1 1 0
Thiết kế và mô phỏng cổng NAND
Hình4. 16 symbol cổng NAND
Hình4. 19 Kết quả check LVS của cổng NAND
Cổng NAND 3
Cổng NAND 3 thực hiện hàm logic có ba ngõ vào. Gọi A, B, C là các ngõ vào và Y là ngõ ra. Thì hoạt động của hai ngõ vào cổng NAND 3 được giải thích bởi các biểu thức logic
Bảng sự thật cổng NAND 3: A B C Y 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 Hình4. 20 Symbol cổng NAND3
Hình4. 21 schematic cổng NAND 3
Cổng XOR
Hàm XOR được xác định bởi biểu thức sau
Bảng sự cổng XOR: A B Y 0 0 0 0 1 1 1 0 1 1 1 0
Thiết kế và mô phỏng cổng XOR
Hình4. 24 schematic cổng XOR
Hình4. 26 simulation cổng XOR
Hình4. 28 kết quả check LVS
Full Adder
Mạch full adder là mạch toán học được sử dụng để tính tổng ba bit với nhau, kết quả ở ngõ ra là một tín hiệu tổng (SUM) và tín hiệu nhớ (CARRY). Mạch này trở nên cần thiết để tính tổng các số nhị phân nhiều bit.
Từ bảng sự thật trên, sử dụng giãn đồ Karnough. Ta có:
Hình4. 29 Giản đồ Karnough của Full Adder
Từ giãn đồ Karnough ta có thể đưa ra hàm logic của SUM và Cout:
Từ kết quả đó ta có sơ đồ schematic
Hình4. 30 Schematic của mạch Full-Adder
Hình4. 32 simulation mạch Full-Adder
Hình4. 34 LVS mạch Full-Adder
Register(Flip-Flop)
Flip-flop D được sử dụng như là thanh ghi dùng để lưu trữ trạng thái của bộ Delta Sigma Modulator. Trong đề tài chúng tôi thiết kế Flip-Flop D sử dụng một tín hiệu Reset và Flip-Flop sẽ thay đổi trạng thái khi có cạnh lên xung clock.
Bảng sự thật Flip-Flop D
Thiết kế và mô phỏng Flip-Flop D
Hình4. 37 Schematic của Flip-FlopD