Cuộc cách mạng của thị trường thông tin di động đưa ra các yêu cầu nâng cấp cải tiến về cả dung lượng hệ thống lẫn tốc độ truyền dẫn dữ liệu. Để tăng khả năng hỗ trợ cho các dịch vụ dữ liệu chuyển mạch gói, 3GPP đã phát triển và chuẩn hóa trong phiên bản R5 một công nghệ mới, HSDPA, cho phép cải thiện tốc độ truyền dẫn dữ liệu đường xuống và được xem như là sự phát triển mang tính cách mạng của mạng truy nhập vô tuyến
WCDMA.
Khái niệm HSDPA dựa trên một kênh truyền tải mới, kênh chia sẻ đường xuống tốc độ cao(HS-DSCH), trong đó một số lượng lớn tài nguyên và công suất được gán cho một người sử dụng tại một TTI( khoảng thời gian truyền) nào đó theo phương pháp ghép theo mã và/hoặc theo thời gian. Ngoài ra, HSDPA sử dụng điều chế và mã hóa hích
nghi(Adaptive Modulation and Coding), HARQ nhanh(Hybrid Automatic Repeat
Requests), và lập lịch gói nhanh(fast packet Scheduling). Những tính năng này được phối hợp chặt chẽ và cho phép thích ứng các tham số truyền dẫn theo mỗi khoảng thời gian TTI nhằm liên tục hiệu chỉnh sự thay đổi của chất lượng kênh vô tuyến.
Các lớp dịch vụ được khuyến nghị cho HSDPA bao gồm: 1) streaming; 2) tương tác; 3) và các dịch vụ cơ bản khác. Môi trường chúng ta tin tưởng sẽ được ưu tiên trong khi xem xét đầu tư nâng cấp lên HSDPA sẽ là môi trường thành phố. HS-DSCH có thể cho phép cải thiện đáng kể dung lượng cho các dịch vụ gói khi hoạt động trong cả macrocell lẫn microcell.
Công nghệ 3G WCDMA hiện nay( theo R99/R4 của 3GPP) cho phép tốc độ dữ liệu gói lên đến 2Mbps. Tuy nhiên, các tiêu chuẩn thiết kế hệ thống WCDMA có một số hạn chế như sau:1) không tận dụng các ưu thế của dữ liệu gói vốn rất phổ biến đối với đường trục hữu tuyến;2) thiết kế dịch vụ 2Mbps hiện nay là không hiệu quả và cũng chưa đáp ứng được nhu cầu sử dụng dịch vụ số liệu; 3) không thể xử lý tốc độ dữ liệu cao lên đến 10Mbps. Do đó, R5 tiếp tục được phát triển để khắc phục những hạn chế này. R5 là một sự phát triển quan trọng của mạng vô tuyến 3G kể từ khi WCDMA được chấp nhận là công nghệ mạng vô tuyến 3G từ năm 1997. trong khi đó, các công nghệ tương đương với WCDMA/HSDPA được gọi là cdma2000-DO(data only) trong pha đầu tiên, và cdma2000-DV(data and voice) trong pha thứ hai. Chúng ta có thể tổng kết các tính năng kỹ thuật của công nghệ WCDMA/HSDPA như sau 1)tương đương với cdma200 1xEV(HDR); 2) điều chế và mã hóa thích ứng;3) sóng mang tốc độ dữ liệu cao (HDRC) trong băng tần 5MHz; 4)64QAM cho phép tốc độ đỉnh xấp xỉ 10,8Mbps; 5) 16QAM hỗ trợ tốc độ đỉnh xấp xỉ 7,2Mbps; 6) mã Turbo; 7) khả năng sửa lỗi gần với giới hạn lý thuyết; 8) ARQ ghép thích nghi; 9) tự động thích ứng liên tục theo điều kiện kênh bằng cách chèn thêm thông tin khi cần; 10) sử dụng AMC khi được kết hợp với HARQ nhằm cải thiện dung lượng của hệ thống; 11) các kỹ thuật được sử dụng cho phép HSDPA hỗ trợ tốc độ 10Mbps; 12) trong một hệ thống dữ liệu và thoại được tích hợp với người sử dụng thoại(12.2 kbps) tải khoảng 30Erl/sector và thông lượng sector của dữ liệu vẫn khoảng 1Mbps.
Hình 9: Mô tả đơn giản hoạt động cơ bản của HSDPA
Mục đích của HSDPA là hỗ trợ truy nhập gói đường xuống tốc độ cao bằng cách sử dụng một kênh chia sẻ đường xuống tốc độ cao(HS-DSCH) và hỗ trợ thoại được tích hợp trên kênh DCH và dữ liệu tốc độ cao trên kênh HS-DSCH trên cùng một sóng
mang( tương tự như DSCH trong R99). Nguyên lý hoạt động của HSDPA được mô tả trong hình 9.
Vấn đề chủ chốt là xác định chất lượng kênh đường xuống cho mỗi người sử dụng độc lập; ví dụ tỷ lệ công suất ký hiệu trên tạp âm(Es/No), và chất lượng bộ tách UE. Node-B có thể ước lượng tốc độ dữ liệu được hỗ trợ cho mỗi UE bằng cách giám sát các lệnh điều khiển công suất phát(TPC) được gửi theo kênh dành riêng (DCH) liên kết với UE đó. Ngoài ra, UE có thể được yêu cầu phát theo chu kỳ một giá trị chỉ thị chất lượng kênh (CQI-Channel Quality Indicator) đặc thù của HSDPA trên kênh điều khiển vật lý dành riêng tốc độ cao (HS-DPCCH) đường lên, kênh này cũng mang cả thông tin báo hiệu chấp nhận/không chấp nhận(Ack/Nack) ở dạng gói dữ liệu dựa trên L1 cho mỗi liên kết. Khi đã ước tính được chất lượng kênh, hệ thống chia sẻ tài nguyên mã và công suất HS-DSCH giữa những người sử dụng khác nhau. Lớp điều khiển truy nhập môi trường(MAC-medium Access Control) được đặt tại Node B,do đó cho phép truy nhập nhanh hơn tới các giá trị đo lường tuyến kết nối, lập lịch gói hiệu quả hơn và
Lập lịch nhanh được thực hiện bởi Node B dựa trên các thông tin về chất lượng kênh, yêu cầu QoS, tài nguyên…
nhanh hơn, cũng như điều khiển chất lượng QoS chặt chẽ hơn. So sánh với phương pháp DMA truyền thống, kênh HS-DSCH không thực hiện với điều khiển công suất nhanh và hệ số trải phổ là cố định. Bằng cách sử dụng kỹ thuật mã hóa Turbo tốc độ thay đổi, điều chế 16QAM, cũng như hoạt động đa mã mở rộng, kênh HS-DSCH hỗ trợ tốc độ dữ liệu đỉnh từ 120Kbps tới hơn 10Mbps. Quá trình điều chế và mã hóa thích nghi cơ bản có một dải động khoảng 20dB, và được mở rộng hơn nữa bởi số đa mã khả dụng. Bảng 5 dưới đây chỉ ra kết nối giữa một khuôn dạng truyền tải và kết nối tài nguyên (TFRC) có thể và tốc độ dữ liệu đỉnh tương ứng.
TFRC Tốc độ dữ liệu Tốc độ dữ liệu Tốc độ dữ liệu QPSK, tỷ lệ mã, hóa 1/4 120Kbps 600Kbps 1.8Mbps QPSK, tỷ lệ mã, hóa1/2 240Kbps 1.2Mpbs 3.6Mbps QPSK, tỷ lệ mã, hóa 3/4 360Kbps 1.8Mbps 5.3Mbps 16QAM Tỷ lệ mã hóa 1/2 480Kbps 2.4Mbps 7.2Mbps 16QAM Tỷ lệ mã hóa 3/4 720Kbps 3.6Mbps 10.7Mbps
Bảng 5. Ví dụ tốc độ dữ liệu đỉnh của HSPDA.
Sau đây chúng ta sẽ lần lượt đi sâu phân tích chi tiết các giải pháp kỹ thuật được sử dụng trong HS-DPA cũng như các lợi ích mang tính cách mạng do chúng đem lại như đã được mô tả tóm tắt ở trên.