Hình 7: Gadget cho cạnh (a, b)

Một phần của tài liệu TỐI ƯU HÓA TOPOLOGY TRONG MẠNG AD-HOC (Trang 29 - 44)

Trong bước đệ quy giả sử chúng ta đã biết Opt(({u1, . . . , uk}, Ei,k), ul) với bất kỳ 1

≤ i ≤ k và k≤ l ≤ n. với mỗi node thêm vào chúng ta tìm được một RA tối ưu khi thêm vào mỗi node đó

Tại bước cuối cùng khi thêm một node cuối cùng chúng ta sẽ tìm được một RA tối ưu nhất cho toàn bộ node N.

Các nhà nghiên cứu đã chứng minh được độ phức tạp của thuật toán này là O(n4). So sánh thuật toán Optimal1dRA khi tìm kiếm một RA tối ưu với giả thiết là các Transmitting Range là bằng nhau thì thuật toán sẽ đơn giản hơn rất nhiều .

3.1.3. Vấn đề RA trong mạng 2 và 3 chiều

Trong phần trước, chúng ta đã phân tích được vấn đề RA trong mạng 1 chiều. So với vấn đề trong mạng 1 chiều thì vấn đề tính toán trở nên phức tạp hơn nhiều, sự tính toán này cũng là một vấn đề lớn trong mạng 2 và 3 chiều này.

Mặc dù giải pháp cho mạng 2 và 3 chiều là một công việc khó khăn, nhưng một giải pháp tối ưu xấp xỉ có thể dễ dàng được tính toán bằng cách xây dựng một Minimum Spaining Tree (MST) trên các node.

Sự xây dựng một RA được tiến hành như sau:

1. Cho N= {u1, . . . , un} là một tập hợp những điểm (Node) trong không gian mạng 2 hoặc 3 chiều

2. Xây dựng một đồ thị vô hướng G = (N, E), với các cạnh là (ui, uj) ∈ E 3. Tìm một MST của G

4. Xác đinh một RAT với RAT(ui) = MAXj|(ui,uj)∈Tδ(ui, uj).

Một ví dụ về cây MST và tương ứng với những RAT được miêu tả trong hình bên dưới

Hình 5: Minimum Spanning Tree

Thời gian xây dựng RAT là O(n2) (Độ phức tạp của thuật toán khi xây dựng MST với n node)

Định lý 3.2.3: (Kirousis et al. 2000)

Cho một tập hợp những điểm (nodes) trong không gian 2 hoặc 3 chiều, và cho RAT

c(RAT) < 2c(RA).

Chứng minh: Việc chứng minh được thực hiện qua hai bước. Trước tiên chúng ta chứng minh c(RA) lớn c(T) nghĩa là chi phí của RA lớn hơn chi phí cả MST. Và sau đó chúng ta sẽ chứng minh c(RAT) < 2c(RA).

3.1.4. Vấn đề về tính đối xứng

Trong vấn đề về RA chúng ta đã quan tâm đến việc thiết lập một đồ thị giao tiếp với những kết nối mạnh. Từ việc những node có những vùng ảnh hưởng khác nhau, những liên kết vô hướng xuất hiện, và chúng có thể đảm bảo cho sự kết nối mạnh. Mặc dù việc triển khai việc liên kết không dây vô hướng là một công việc có thể thực thi được nhưng lợi ích mang lại của nó đang là một vấn đề phải nghi ngờ. Những vấn đề của liên kết không dây vô hướng được đề cập trong tài liệu Marina and Das 2002

Hầu hết các giao thức định tuyến cho mạng ad-hoc ( DSC, AODV) đều dựa trên nền tảng là sự ngầm định của liên kết không dây đều có tính 2 chiều. Điều này cũng đang được áp dụng tương tự với sự thực thi của tầng MAC trong chuẩn IEEE 802.11 nó chính là cơ sở của việc trao đổi các thông điệp RequestToSend/ClearToSend: Khi một node u muốn send một bản tin tới v trong transmitting range nó sẽ gửi một RTS tới v và sẽ đợi CTS từ v gửi lại. Nếu u không nhận được CTS trong một khoảng thời gian giới hạn nào đó, thì bản tin được gửi sẽ bị ngắt và sau đó nó sẽ cố gắng gửi lại sau một khoảng thời gian nào đó. Nếu liên kết gữa node u và node v là vô hướng, một trong hai bản tin RTS hoặc CTS là không nhận được và sự liên kết ở đây cũng là không có. Việc hỗ trợ liên kết vô hướng ngầm định rằng có những node trung gian sẽ đại diện cho u hoặc v nhận và gửi các bản tin RTS và CTS. Ngoài ra một cơ chế truy cập khác( ví dụ như cơ chế phát hiện xung đột thay vì tránh xung đột) cũng nên được sử dụng. Dù sao thì việc hỗ trợ liên kết không dây vô hướng sẽ tạo ra một cuộc cách mạng thay đổi những giao thức đang được thực thi hiện thời trong chuẩn IEEE 802.11

Những lý do trên đây là động cơ thúc đẩy các nhà khoa học nghiên cứu những hạn chế trong vấn đề RA, và điều chắc chắn rằng tính đối xứng bắt buộc phải được thêm vào trong đồ thị truyền thông tạo ra.

Chi tiết hơn, hai vấn đề sau đây đã được định nghĩa và đã được nghiên cứu.

3.4.1 (Vấn về WSRA): Cho N là một tập hợp những node trong không gian d chiều, với d = 1, 2, 3. Cho RA là một vùng ảnh hưởng cho N và G là là một đồ thị liên thông có hướng. Đồ thị con đối xứng của G được xác định là GS, thu được bằng cách bỏ đi các liên

kết có hướng, vấn đề WRSA là xác định một hàm Range assigment RA khi mà GS được kết nối và c(RA)=∑uN((RA(u))α là nhỏ nhất với α là độ suy giảm cường độ theo khoảng cách.

3.4.2 Vấn đề SRA: Cho N là một tập hợp những node trong không gian d chiều, với d = 1, 2, 3. Một range assignmnet RA cho N được gọi là đối xứng nếu nó sinh ra một đồ thị liên thông trong đó đồ thị này chỉ bao gồm những liên kết 2 chiều. Đó là RA(ui) ≥ δ(ui, uj)

⇔RA(uj) ≥ δ(ui, uj). Vấn đề Symmetric Range Assignment (RSA) là xác định một hàm RA khi có một đồ thị liên thông có hướng được kết nối và c(RA)=∑uN((RA(u))α là nhỏ nhất với α là độ suy giảm cường độ theo khoảng cách.

Hình 6: SRA và WSRA

Hình trên thể hiện sự khác nhau trong việc yêu cầu tính đối xứng trong vấn đề WSRA và SRA. Trong WSRA những liên kết vô hướng là được cho phép nhưng chúng không đại diện cho việc kết nối . Trong RSA tất cả những liên kết trong đồ thị liên thông phải có 2 hướng: node u , v và w phải tăng transmitting range để thỏa mãn những yêu cầu về tính đối xứng.

Chú ý rằng những yêu cầu về tính đối xứng 2 phiên bản này của vấn đề: trong vấn đề WSRA(Weakly Symmetric Range Assignment) trong đồ thị liên thông có thể bao gồm

những liên kết vô hướng tuy nhiên chúng không đại diện cho tính kết nối. Còn đối với vấn đề RSA đồ thị liên thông chỉ bao gồm các liên kết 2 chiều. Đây là một yêu cầu chính tron đồ thị liên thông.Các bạn có thể xem hình bên trên để có thể hiêu hơn. Động cơ thúc đẩy cho việc nghiên cứu WSRA bắt nguồn từ việc quan sát những gì thực sự quan trong trong việc thiết kế mạng ad-hoc đó là tạo nên một khung của mạng. Hay nói cách khác trong một mạng có thể có các liên kết tồn tại mà tính 2 chiều không được đảm bảo, những liên kết này có thể được bỏ qua khi mạng không có các kết nối này.

3.1.4.1. Vấn đề SRA trong mạng 1 chiều

Trong trường hợp các node nằm trong cùng một đường thẳng, một SRA cho tập hợp các node đó có thể được xây dựng như sau:

Sắp xếp các node theo tọa độ không gian của chúng, cho {u1, . . . , un} là kết quả của sự sắp xếp này.

Gán cho node u1 một transmitting range δ(u1, u2) node un một transmitting range δ(un−1, un), và node ui một transmitting range bằng Max{δ(ui−1, ui),δ(ui, ui+1)}

Bổ sung transmitting range vào một số node để đảm bảo tính đối xứng: với mỗi cạnh vô hướng(ui, uj) trong đồ thị liên thông được tạo ra bởi bước trước đó bằng cách thêm transmitting range vào node uj sao cho nó có thể tiếp cận được với ui, quá trình này được lặp lại cho đến khi tất cả các cạnh trong đồ thị đều có tính thuận nghịch.

Chúng ta có thể nhìn thấy ngay được là, Range assignment RA được xây dựng tùy theo chiến lược mô tả ở phía trên, để tạo ra một đồ thị liên thông kết nối trong đó tất cả các liên kết đều có tính 2 chiều. Để chứng minh rằng RA này là tối ưu, thì trong khi quan sát rằng để đạt được kết nối thì node phải được kết nối với node bên phải và bên trái của node hàng xóm gần nó nhất. Hơn nữa các thủ tục tăng ở bước 3 sẽ tăng một transmitting range lên một giá trị nhỏ nhất để có thể thỏa mãn tính đối xứng của transmitting range.

Độ phức tạp tính toán của thuật toán cho vấn đề được nêu ở phía trên là O(n log n),so sánh với độ phức tạp của thuật toán cho vấn đề về phiên bản không giới hạn là O(n4) thì độ phức tạp của thuật toán này là thấp hơn rất nhiều. Như vậy chúng ta có thể kết thúc vấn đề tính đối xứng trong range assignment với mạng 1 chiều.

3.1.4.2. Vấn đề SRA trong mạng 2 và 3 chiều

Trong chương này, chúng ta sẽ cho thấy rằng, trái ngược với trường hợp trong mạng 1 chiều, trong mạng 2 và 3 chiều những điều kiện về tính đối xứng sẽ không làm ảnh

hưởng tới độ phức tạp của việc tính toán những vấn đề. Người đọc sẽ thấy rằng sự chứng minh là khá dài dòng và phức tạp. Những khó khăn của việc chứng minh bắt đầu từ thực tế là khi nghiên cứu về tính phức tạp của các vấn đề mạng ad-hoc thì thì hình dạng của mạng là không thể được bỏ qua. Chúng ta đã chứng minh rằng những node có thể thực sự được đặt trong không gian 2 hay 3 chiều trong đó bất kỳ những trường hợp đặc biệt nào cũng có thể được chuyển thành vấn đề kiểm soát đặc biệt SRA. Việc này thường được thực hiện bằng cách sử dụng một geometric hay thuật ngữ hay gọi là gadget .

Để dễ dàng hơn cho việc trình bày, giả sử α = 2, để chứng minh NP-hardness của SRA chúng ta biểu diễn mặt phẳng 2 chiều bằng một hàm đa thức thời gian. Hàm này sau đó sẽ được biểu diễn dưới một dạng hình học mô phỏng. Việc xây dựng một gadget được trình bày như sau:

- Cho một mặt phẳng 2 chiều G, xây dựng một mặt phẳng trực giao với G

- Thêm 2 đỉnh cho mỗi đoạn cong vì vậy mặt phẳng sẽ được biểu diễn bằng một đồ thị phẳng với các đoạn thẳng là D(G).

- Thay mỗi cạnh của D(G) bằng một tập hợp các node thích hợp(gadget). Tâp hợp những điểm trong không gian 2 và 3 chiều là kết quả của sự thay thế này được gọi là S(G) Sau đây là các thuộc tính của một gadget:

Cho một D(G) = (V, E) được xây dựng như phía trên. Cho λ, λ’ , ε ≥ 0 với điều kiện λ + ε > λ’ , và cho γ > 1. Với bất kỳ (a, b) ∈ E, gadget tương ứng là gab được tạo bởi sự phân chia tập hợp những điểm

Vab= {a, b}, Yab= {yab, yba} Xab= {x1, . . . , xl1}, and Zab= {z1, . . . , zl2} l1, l2 phụ thuộc vào độ dài của (a,b). Tập hợp những điểm trong mặt phẳng R2 giữ những tính chất sau:

(a) δ(a, yab) = δ(b, yba) = λ + ε.

(b) Xab là một chuỗi những điểm vì vậy δ(a, x1) = δ(x1, x2) = … = δ(xl1 , b) = λ và, với bất kỳ i = j + 1, j − 1, δ(xi, xj) ≥ λ.

(c) Zab là một chuỗi các điểm vì vậy δ(yab, z1) = δ(z1, z2) = … = δ(zl2, yba) = λ và , với bất kỳ i = j + 1, j − 1, δ(zi, zj) ≥ λ

(d) Với bất kỳ xi∈ Xab, zj∈ Zab , δ(xi, zj) > λ + ε.Hơn nữa , Với bất kỳ i = 1, . . . , l1, δ(xi, yab) ≥ λ + ε và δ(xi, yba) ≥ λ + ε

(e) Cho 2 gadget bất kỳ gab và gcd, với bất kỳ v ∈ gab\gcd và w ∈ gcd\gab,chúng ta có δ(v, w) ≥ λ. Hơn nữa, nếu v ∉ Vab∪ Xab hoặc w ∉ Vcd∪ Xcd thì δ(v, w) ≥ γ λ..

Trong Clementi et al. 1999 một giá trị thích hợp cho việc chọn λ, λ’, ε và γ trong khi thỏa mãn các điều kiện (a)…(e) thì một số tính chất sau cũng nên được thêm vào:

(b’) δ(a, xj) > λ + ε với bất kỳ j ≠ 1, và δ(xi, b) > λ + ε với bất kỳ i ≠ l1. (c’) δ(yab, zj) > λ + ε với bất kỳ j≠1, và δ(zi, yba) > λ + ε với bất kỳ i ≠ l2

(d’) Với bất kỳ xi∈ Xab, zj∈ Zab, δ(xi, yab) > λ + ε, δ(xi, yba) > λ + ε, δ(zj, a) > λ + ε, và δ(zj, b) > λ + ε

Cho những tính chất (a)…(e) và (b’)…(d’), nó chia mỗi gadget ra làm 2 thành phần có khoảng cách là λ + ε: thành phần VX bao gồm tập hợp những điểm trong Vab∪ Xab và thành phần YZ, bao gồm một dãy các điểm Yab∪ Zab.Hơn nữa , cho một cặp node bất kỳ (v, w) với v nằm trong VX và w nằm trong YZ , chúng ta có δ(v, w) = λ + ε khi và chỉ khi v = a w = yab hoặc v = b và w = yba. Gadget cho cạnh (a,b) được biểu diễn như trong hình bên dưới.

Hình 7: Gadget cho cạnh (a, b)

Chú ý rằng trong một vùng ảnh hưởng bất kỳ một node nào cũng phải có một transmitting range ít nhất là bằng với khoảng cách từ nó tới node hàng xóm gần nó nhất. Cho RAmin là range assignment cho S(G) như vậy mỗi node sẽ có transmitting range bằng khoảng cách từ nó đến hàng xóm gần nhất của nó. Cho một gadget với những thuộc tính như đã nêu ở phía trên và RAmin có nghĩa là những node trong VX sẽ có transmitting range là λ và những node trong YZ có transmitting range là λ’. Vì tính đối xứng của các điểm trong mặt phẳng nên RAmin là đối xứng. Đồ thị liên thông có RAmin được tạo bởi m+1 các thành phần kết nối, với m = |E|: trong VX có m kết nối và một kết nối với một gadget khác, vì vậy để

có một đồ thị liên thông được kết nối và có tính đối xứng chúng ta cần định nghĩa một vài điểm cẩu nối (bridge points) giữa VX và YZ.

Cho Y = ∪a,bEYab, X =∪a,bEXab, Z = ∪a,bEZab, and V =∪a,bE Va,b. Dưới đây là những đinh nghĩa những tính chất của một range assignment đối xứng tối ưu (optimal symmetric range assignment) cho S(G).

3.4.3. (RA chính tắc) Một range assignment kết nối đối xứng cho S(G) được gọi là đối xứng nếu:

- RAc(v) = λ với bất kỳ v ∈ X;

- RAc(v) = λ’ với bất kỳ v ∈ Z

- RAc(v) = λ hoặc RAc(v) = λ + ε với bất kỳ v ∈ V

- RAc(v) = λ’ hoặc RAc(v) = λ + ε với bất kỳ v ∈ Y

3.4.4. Bổ đề (Blough et al. 2002) Cho S(G) là tập hợp các điểm nằm trong không gian R2 theo cách xây dựng được giới thiệu ở phía trên. γ, λ, và ε là các hằng số xác định sao cho: 2 2 2 2 1(( ) ) ( ) ) (γλ > − λ+ε −λ + λ+ε m m

Thì với bất kì một range assignment kết nối đối xứng RA cho S(G) tồn tại một range assignment chính tắc RAc thỏa mãn c(RAc) ≤ c(RA).

Chứng minh: Chúng ta sẽ chứng minh rằng với bất kỳ một range assignmet kết nối đối xứng không chính tắc RA nào đều có thể chuyển đổi thành assigment chính tắc RAc

thông qua một chuỗi các bước lặp. Tại mỗi bước lặp sẽ không làm tăng thêm chi phí cho RA. Ở tất cả các bước cần chú ý rằng range assignment của node u là không chính tắc, qua các phép biến đổi chúng ta sẽ tìm ra một RA chính tắc cho u. Vì vậy số lượng những RA không chính tắc của từng node trong S(G) sẽ giảm dần theo từng bước lặp vì vậy những bước xử lý sẽ kết thúc trong một khoảng thời gian giới hạn. Sau đây chúng ta sẽ mô tả từng bước trong quá trình xử lý này:

Cho v là một điểm không chính tắc và cho RA(v) là transmitting range của v, chúng ta có những trường hợp sau:

1. RA(v) < γ λ. Trong trường hợp này transmitting range của v không đủ rộng lớn để bao quát những node của thành phần YZ của một gadget khác. Chú ý rằng nếu RA(v) < λ + ε thì v không thể là bridge point giữa YZ và VX được, do vậy transmitting range có thể giảm λ hay λ’ (phụ thuộc vào v∈ V ∪ X hay v ∈ Y ∪ Z) mà không phải cắt kết nối và duy trì tính đối xứng. Bây giờ chúng ta giả sử RA(v) ≥ λ + ε. Không mất tính

tổng quát ta giả sử rằng v ∈ gab, với (a, b) ∈ E. Nếu v ∈ Vab∪ Yab thì transmitting range của nó có thể được giảm đến λ + ε mà không phải ngắt kết nối và duy trì tính đối xứng. Nói cách khác, chú ý đến range assigment RAab như sau:

- RAab(w) = RA(w) với bất kỳ w ∈ S(G) − gab; - RAab(a) = RAab(yab) = λ + ε;

- RAab(b) = λ và RAab(yab) = λ ;

- RAab(x) = λ với bất kỳ x ∈ Xab;

- RAab(z) = λ với bất kỳ z ∈ Zab.

Cho thuộc tính của nhứng điểm trong một gadget như đã trình bày phía trên,thì ta có RAab

là có tính đối xứng . Hơn nữa đồ thị liên thông thu được từ RAab đã được kết nối và RA là một range assingment chính tắc trong gab và vì vậy cho c(S(G)\gab) =∑v∈S(G)\g abRA(v)2. Để thỏa mãn yêu cầu về tính đối xứng nên ta có

c(RA) ≥ c(S(G)\gab) + 2 * RA(v)2+ (l1+ 1) * λ2+ (l2+ 1) * λ’2

Với l1 = |Xab| và l2 = |Zab|

Với một điều kiện khác nữa ta có

c(RAab) = c(S(G)\gab) + 2 • (λ + ε)2+ (l1+ 1) • λ2+ (l2+ 1) • λ’2

Từ RA(v) ≥ λ + ε chúng ta có c(RA) − c(RAab) ≥ RA(v)2 − (λ + ε)2 ≥ 0

2. RA(v) ≥ γ λ trong trường hợp này v có thể là bridge point giữa nhiều YZ và VX. Không mất tính tổng quát ta giả sử rằng v ∈ gab, với (a, b) ∈ E . Chúng ta đầu tiên chuyển đổi range assignment như giới thiệu phía trên, thu được một range assignment RAab

Một phần của tài liệu TỐI ƯU HÓA TOPOLOGY TRONG MẠNG AD-HOC (Trang 29 - 44)

Tải bản đầy đủ (DOC)

(54 trang)
w