ĐẶC TRƯNG DÒNG THẢI VÀ LỰA CHỌN CÔNG NGHỆ XỬ LÝ NƯỚC THẢI CHO NHÀ MÁY

Một phần của tài liệu thiết kế hệ thống xử lý nước thải cho dự án nâng công suất của công ty cổ phần bia Sài Gòn (Trang 43 - 54)

- Các công trình hiếu khí nhân tạo xử lý nước thải dựa trên cơ sở sinh trưởng lơ lửng của vi sinh vật – kỹ thuật bùn hoạt tính.

ĐẶC TRƯNG DÒNG THẢI VÀ LỰA CHỌN CÔNG NGHỆ XỬ LÝ NƯỚC THẢI CHO NHÀ MÁY

NƯỚC THẢI CHO NHÀ MÁY

III.1. Đặc trưng dòng thải

Tùy theo tính chất, đặc thù và mức độ ô nhiễm của từng nguồn nước thải trong công nghệ sản xuất bia (sơ đồ hình 1.3), ta có thể phân thành 3 nhóm sau đây:

1. Nhóm 1: Nước thải coi như sạch.

Nước làm lạnh, nước ngưng, đây là nguồn nước thải ít hoặc gần như không gây ô nhiễm nên có khả năng tuần hoàn sử dụng lại.

2. Nhóm 2: Nước thải sinh hoạt.

Lượng nước dùng cho nhu cầu sinh hoạt của nhân viên điều hành và tham gia sản xuất trong công ty khoảng 250 người. Tiêu chuẩn nước dùng cho sinh hoạt của công nhân được tính theo quy định 20 TCN-33-85 Bộ Xây Dựng như sau:

Bảng 3.1. Tiêu chuẩn nước dùng cho sinh hoạt của công nhân [20 TCN-33-85]

Loại phân xưởng Tiêu chuẩn dùng nước

(lít/người/ca)

Hệ số không điều hòa (K giờ)

Phân xưởng nóng

Q tỏa nhiệt >20 kcal/m3.h 45 2,5

Phân xưởng khác

Q tỏa nhiệt <20 kcal/m3.h 25 3,0

Tính toán sơ bộ ta được lượng nước thải vào khoảng 12m3/ngày đêm. Lượng nước thải này có lưu lượng nhỏ và có bể phốt xử lý riêng nên coi như không có ảnh hưởng tới hệ thống xử lý mà ta thiết kế.

3. Nhóm 3: Nước thải trong quá trình sản xuất.

Công nghiệp sản xuất bia là một trong những ngành công nghiệp đòi hỏi tiêu tốn một lượng nước lớn cho mục đích sản xuất và vì thế sẽ thải ra môi trường một lượng nước thải lớn. Cụ thể như sau:

- Nước thải từ công đoạn nấu - đường hóa: bao gồm + Nước thải trong quá trình rửa bã sau nấu

+ Nước thải do vệ sinh nồi nấu gạo, malt, hoa; vệ sinh thiết bị lọc dịch đường và thiết bị tách bã.

Đặc tính của nước thải này có mức độ ô nhiễm rất cao, có chứa bã malt, bã hoa, tinh bột, các chất hữu cơ, một ít tanin, chất đắng, chất màu…

- Nước thải từ công đoạn lên men:

Nước vệ sinh các tank lên men, thùng chứa, đường ống, sàn nhà… có chứa bã men, bia cặn và các chất hữu cơ.

- Nước thải từ công đoạn hoàn tất sản phẩm: Lọc, bão hòa CO2, chiết chai, đóng nắp, thanh trùng.

Nước thải chủ yếu từ công đoạn này là nước vệ sinh thiết bị lọc, nước rửa chai và téc chứa. Đây cũng là một trong những dòng thải có ô nhiễm lớn trong sản xuất bia.

Nước thải từ công đoạn này có chứa bột trợ lọc, một ít bã men, bia còn lại từ bao bì tái sử dụng, bia rơi vãi trong quá trình chiết, pH cao…

- Nước rửa sàn các phân xưởng, nước thải từ nồi hơi, nước từ hệ thống làm lạnh có chứa hàm lượng chlorit cao.

- Xút và axit thải ra từ hệ thống CIP, xút từ thiết bị rửa chai. Dòng thải này có lưu lượng nhỏ và cần thu hồi riêng để xử lý cục bộ, tuần hoàn tái sử dụng cho các mục đích khác.

Trong sản xuất bia, công nghệ ít thay đổi từ nhà máy này sang nhà máy khác, sự khác nhau có thể chỉ là sử dụng phưong pháp lên men chìm hay nổi. Nhưng sự khác nhau cơ bản là vấn đề sử dụng nước cho quá trình rửa chai, lon, máy móc thiết bị, sàn nhà… Điều đó dẫn đến tải lượng nước thải và hàm lượng các chất ô nhiễm của các nhà máy bia rất khác nhau. Ở các nhà máy bia có biện pháp tuần hoàn nước và công nghệ rửa tiết kiệm nước thì lượng nước thấp.

Hiện nay tiêu chuẩn nước thải tạo thành trong quá trình sản xuất bia là 8 – 14 lít nước thải/lít bia [6]; đồng thời lượng nước thải tạo thành trong quá trình sản xuất bia của Công ty Cổ phần Bia Sài Gòn – Miền Trung (công suất 50 triệu lít bia/năm) ước tính khoảng 8 lít nước thải/lít bia. Do đó, nếu nâng công suất nhà máy lên 100 triệu lít bia/năm thì tổng lượng nước thải ô nhiễm trong quá trình sản xuất từ các nguồn nêu trên ước tính trong khoảng 2600 – 3200 m3/ngày. Tuy nhiên, do đặc thù của ngành bia, vào ba tháng giáp tết thì công suất có thể tăng từ 20 – 30% công suất trung bình (tức công suất nhà máy ba tháng giáp tết đạt 120 – 130 triệu lít bia/năm). Do đó, tổng lượng nước thải lớn nhất ước tính có thể lên tới 4000 m3/ngày đêm. Đây cũng chính là lưu lượng thiết kế hệ thống xử lý nước thải.

Căn cứ vào kết quả phân tích nước thải thực tế hiện nay của nhà máy Bia Sài Gòn – Miền Trung (công suất 50 triệu lít bia/năm) và tham khảo một số kết quả phân tích nước thải của các nhà máy bia trong nước và các tài liệu có liên quan thì thành phần chủ yếu nước thải của nhà máy bia có đặc tính trung bình như sau:

- BOD5 (mg/l) : 1300-1700

- COD (mg/l) : 2000-3000

- TSS (mg/l) : 400-800

- pH : 8,5 – 11

- Tổng Phốtpho (mg/l) : 8

- Tải trọng nước thải (kg BOD5/m3 bia): 3,5 – 4,5

III.2. Lựa chọn công nghệ xử lý nước thải cho nhà máy

Các thông số đầu vào và tiêu chuẩn dòng ra của nước thải nhà máy bia Sài Gòn – Miền Trung công suất 100 triệu lít bia/năm:

Bảng 3.2. Các thông số đầu vào và tiêu chuẩn dòng ra của nước thải nhà máy

Thông số Nước thải đầu

vào

Nước thải sau xử lý (QCVN 24 – 2009) cột B Lưu lượng (m3/ngày.đêm) 4000 4000 COD (mg/l) 2500 100 BOD (mg/l) 1500 50 SS (mg/l) 600 100 pH 8,5 – 11 5,5 – 9 Tổng Nitơ (mg/l) 100 30 Tổng photpho (mg/l) 8 6

Lựa chọn sơ đồ dây chuyền công nghệ xử lý nước thải cho các nhà máy công nghiệp thực phẩm nói chung và nhà máy bia nói riêng là một bài toán kinh tế, kỹ thuật phụ thuộc vào nhiều yếu tố:

Lưu lượng và đặc trưng của nước thải.

Yêu cầu nước thải sau xử lý.

Diện tích và vị trí đất đai sử dụng để xây dựng trạm xử lý nước thải.

Điều kiện kinh tế và kỹ thuật.

Như vậy, từ sự phân tích đặc tính nước thải của nhà máy ta thấy nguồn nước thải phát sinh từ nhà máy có nguồn gốc, thành phần và tính chất khác nhau, được phát sinh từ nước làm mát, nước ngưng, nước vệ sinh các thiết bị nấu, lọc, lên men, nước rửa sàn, nhà xưởng, nước rửa chai, téc chứa… Nước thải của nhà máy bia nói chung chứa hàm lượng chất hữư cơ cao ở trạng thái hoà tan và trạng thái lơ lửng, chủ yếu là các hiđratcacbon, protêin, các axit hữu cơ, là các chất có khả năng phân huỷ sinh học gây mùi hôi thối, lắng cặn, giảm nồng độ oxy hoà tan trong nước nguồn khi tiếp nhận chúng. Mặt khác, các muối nitơ, phốtpho trong nước thải bia dễ gây hiện tượng phú dưỡng cho các thuỷ vực; tỷ lệ BOD5/COD = 0,5 – 0,7 thích hợp với xử lý bằng biện pháp sinh học.

Xử lý nước thải bằng biện pháp sinh học gồm xử lý sinh học hiếu khí và xử lý sinh học yếm khí.

Xử lý sinh học bằng vi sinh hiếu khí (phương pháp sử dụng bùn hoạt tính) thường chỉ thích hợp cho xử lý nước thải có nồng độ COD, BOD5 thấp (BOD5<500 mg/l). [7]

Xử lý sinh học bằng vi sinh yếm khí là quá trình phân huỷ các chất hữu cơ, vô cơ có trong nước thải khi không có oxi, quá trình này dùng để ổn định cặn và xử lý nước thải công nghiệp có nồng độ COD, BOD cao (thường COD > 2000 mg/l). Với nước thải của nhà máy bia Sài Gòn – Miền Trung có thành phần ô nhiễm như trên đã phân tích thì không thể xử lý trực tiếp bằng phương pháp sinh học hiếu khí được. Tuy nhiên, nếu chỉ xử lý bằng phương pháp sinh học yếm khí thì nước thải sau xử lý không đạt tiêu chuẩn thải (QCVN 24 – 2009 cột A, cột B) do quá trình phân huỷ yếm khí không triệt để vì hiệu suất xử lý yếm khí cao nhất cũng chỉ đạt 70 – 85% [13].

Vì vậy, sau phân huỷ yếm khí thường có hệ thống phân huỷ hiếu khí để xử lý triệt để các chất ô nhiễm còn lại. Do đó, trong đồ án này chọn phương pháp xử lý sinh học yếm khí kết hợp hiếu khí để xử lý nước thải nhà máy bia.

Việc lựa chọn xử lý yếm khí kết hợp hiếu khí là vì: Nước thải của nhà máy bia Sài Gòn – Miền Trung theo phân tích có mức độ ô nhiễm lớn do đó xử lý yếm khí nhằm giảm mức độ ô nhiễm trước khi đưa vào xử lý hiếu khí, vừa giảm được thể tích bể hiếu khí vừa giảm được thể tích bùn sinh ra, thu hồi năng lượng dưới dạng biogas, giảm tiêu thụ điện năng cho việc cấp khí…

III.3. Sơ đồ công nghệ hệ thống xử lý nước thải đã được lựa chọn (hình 3.1)

Thuyết minh

1. Tách rác thô, gom nước thải

Nước thải sản xuất từ các phân xưởng sản xuất và nước rửa chai, theo đường mương dẫn chảy về khu xử lý. Phần nước xút rửa chai sẽ được thải từ từ vào hệ thống, không làm cho pH nước thải tăng. Bể thu gom được xây dựng trong cùng mặt bằng của khu xử lý. Nước thải trước khi đi vào bể thu gom, phần rác thô có kích thước lớn sẽ được giữ lại tại song chắn rác thô đặt nghiêng 600 ở ngăn tách rác. Rác tách ra sẽ được công nhân vận hành gom vào thùng chứa và mang đi đổ nơi qui định của nhà máy.

Nước thải từ hố gom được bơm lên bể cân bằng nhờ 2 bơm chìm (1 bơm dự phòng hoặc hoạt động đồng thời). Các bơm vận hành hoàn toàn tự động nhờ hệ thống điều khiển.

Hình 3.1. Sơ đồ hệ thống xử lý nước thải đề xuất tại Công ty Bia Sài Gòn-Miền Trung.

Ghi chú: đường nước thải đường rác

Đường bùn đường khí Nước thải trong

quá trình sản xuất THIẾT BỊ TÁCH RÁC THÔ BỂ YẾM KHÍ UASB HỐ GOM THIẾT BỊ TÁCH RÁC TINH BỂ ĐIỀU HÒA BỂ HIẾU KHÍ SBR BỂ KHỬ TRÙNG Nước đã xử lý, ra cống thoát Thùng rác Máy ép bùn Bể nén bùn Bể chứa bùn Đóng bao bùn khô Bơm Sục khí Hóa chất Bơm Dinh dưỡng

Đo lưu lượng

Bơm

Tách nước dư

Decanter

Điều chỉnh pH Nước xút rửa chai

Thu khí sinh học Điều chỉnh thải từ từ BỂ LẮNG Sục khí

2. Tách rác tinh và điều hòa cân bằng

Nước thải từ hố gom trước khi bơm vào bể cân bằng, được đi qua 1 thiết bị tách rác tinh dạng trống quay (RDS) có kích thước khe chắn 1mm. Tại đây, toàn bộ rác có kích thước >1mm sẽ được giữ lại trên bề mặt trống và được dao gạt đưa ra ngoài và đổ vào thùng chứa rác, phần nước đi vào bể điều hòa.

Nước thải sau khi qua thiết bị tách rác tinh tiếp tục chảy qua bể cân bằng. Bể cân bằng phải có thể tích đủ lớn để đảm bảo điều hòa nồng độ thành phần các chất ổn định cho quá trình xử lý, cũng như điều hòa lưu lượng.

Để vi sinh vật sinh trưởng và phát triển tốt, quá trình xử lý sinh học yếm khí đòi hỏi pH = 6,5 – 7,5. Vì thế, cần phải duy trì độ kiềm, không cho pH giảm xuống dưới 6,2 và nồng độ các chất dinh dưỡng đảm bảo tỷ lệ COD : N : P = 350 : 5 : 1. Do đó, tại bể điều hòa, nước được điều chỉnh pH về giá trị thích hợp nhờ bộ pH- controler. Tùy theo giá trị pH trong nước thải mà bơm định lượng xút và axit cho phù hợp. Ngoài ra, để chống lại hiện tượng sinh bọt trong bể yếm khí, bể hiếu khí, nước thải được châm thêm một lượng chất chống tạo bọt nhờ bơm định lượng.

Để tạo khả năng đồng đều các chất trong nước thải và tránh phân hủy yếm khí gây mùi khó chịu, bể điều hòa được sục khí nén từ ngoài vào.

3. Bể lắng

Nước thải từ bể điều hòa được bơm lên bể lắng. Tại đây, hàm lượng chất rắn lơ lửng SS, BOD, COD giảm xuống nhằm giảm tải và đảm bảo điều kiện đầu vào cho các công trình xử lý sinh học phía sau.

Nước thải sau khi qua bể lắng được bơm sang bể xử lý yếm khí UASB. Bùn lắng ở đáy bể được đưa sang bể chứa bùn.

4. Xử lý sinh học yếm khí (UASB)

Tại bể UASB nước thải sẽ được phân phối đều trên diện tích đáy bể qua hệ thống ống phân phối có đục lỗ. Nhờ hỗn hợp bùn yếm khí trong bể mà các chất hữu cơ hoà tan trong nước được hấp thụ, phân huỷ và chuyển hoá thành khí (khoảng 70- 80 % là CH4, 20-30% là CO2). Bọt khí sinh ra bám vào hạt bùn cặn nổi lên trên làm xáo trộn gây ra dòng tuần hoàn cục bộ trong lớp cặn lơ lửng. Khi hạt cặn nổi lên gặp tấm chắn khí, khí sẽ được thoát lên trên và được thu vào hệ thống thu khí mêtan ở phía trên thành bể còn cặn rơi xuống dưới. Hỗn hợp bùn nước đã tách khí đi vào ngăn lắng. Tại đây bùn lắng xuống dưới đáy qua cửa phân phối tuần hoàn lại vùng phản ứng yếm khí, phần bùn dư sẽ được đưa sang bể chứa bùn. Nước thải ra khỏi bể UASB có hàm lượng chất hữu cơ tương đối thấp được chảy tràn qua bể Aeroten SBR thông qua máng thu nước.

5. Bể xử lý sinh học hiếu khí theo mẻ (SBR)

Từ bể UASB, nước thải chảy từng mẻ vào bể SBR qua tuyến ống có lắp van điện để điều khiển tự động. Giai đoạn xử lý sinh học hiếu khí chính xảy ra tại đây.

Quá trình oxy hóa chất bẩn thực hiện nhờ bùn hoạt tính hiếu khí. Bùn hoạt tính hiếu khí là tập hợp các vi sinh vật có khả năng oxy hóa các chất hữu cơ trong nước thải thành CO2, nước và các chất vô cơ khác. Để giữ cho bùn hoạt tính ở trạng thái lơ lửng và để cung cấp đủ oxy cho quá trình oxy hóa các chất hữu cơ, dưới đáy mỗi bể có lắp hệ thống phân phối khí. Để vi sinh vật phân hủy hết các chất hữu cơ có trong nước thải thì thể tích bể sinh học phải lớn và thời gian lưu lại trong bể đủ dài.

Hiệu quả xử lý tại bể SBR phụ thuộc vào các yếu tố sau: Thành phần các chất trong nước thải, pH, hàm lượng oxy, lượng bùn, trạng thái hoạt tính của bùn…

Trong quá trình sinh trưởng và phát triển của vi sinh vật hiếu khí, nhu cầu không thể thiếu được là oxy. Để vi sinh vật hoạt động tốt, lượng oxy hòa tan trong nước ở bể sinh học ít nhất phải đạt 2 – 4 mg/l. Tùy theo nhiệt độ của môi trường mà lượng oxy trong nước có khác nhau. Lượng oxy được cung cấp ở đây là nguồn oxy không khí thông qua thiết bị cấp khí và ở đáy bể có lắp một dàn ống khuếch tán khí. Nước thải lưu lại trong bể SBR và hầu hết các chất hữu cơ đều được phân hủy; hàm lượng BOD giảm và hàm lượng các thông số khác đạt tiêu chuẩn yêu cầu của nước thải sau xử lý (QCVN 24 – 2009 loại B). Tuy nhiên, trong nước thải vẫn còn chứa một lượng lớn bùn hoạt tính cần được tách ra khỏi nước thải trước khi thải ra môi trường. Vì vậy, nước thải sau chu kỳ sục khí sẽ được để yên nhằm lắng tách bùn. Phần nước trong sẽ được gạn ra khỏi nhờ thiết bị gạn nước bề mặt Decanter sau đó đi vào bể khử trùng. Phần bùn lắng sẽ tham gia vào chu trình xử lý mới, lượng bùn dư sẽ được bơm qua bể nén bùn và tiếp tục xử lý.

Quá trình hoạt động của hệ thống từ lúc nước thải vào đến khi ra khỏi bể SBR được điều khiển hoàn toàn tự động từ trung tâm điều khiển. (quá trình này cũng có thể vận hàng bằng tay).

6. Khử trùng

Nước thải sau khi qua bể SBR và được lắng gạn trong đã đạt một số tiêu chuẩn của nước thải nhưng trong nước thải vẫn còn chứa vi sinh vật và mầm bệnh. Vì vậy, để đảm bảo an toàn, nước thải cần được khử trùng trước khi thải vào môi trường. Để đảm bảo thời gian tiếp xúc giữa nước thải với clo hoạt tính, thể tích của bể khử trùng phải đủ lớn để nước thải lưu lại trong bể khử trùng tối thiểu là 30 – 45 phút.

Hiệu quả và kinh tế nhất là khử trùng bằng dung dịch hypoclorit. Nồng độ clo

Một phần của tài liệu thiết kế hệ thống xử lý nước thải cho dự án nâng công suất của công ty cổ phần bia Sài Gòn (Trang 43 - 54)

Tải bản đầy đủ (PDF)

(100 trang)