Hệ thống Cảm biến mạng tích hợp không dây WINS

Một phần của tài liệu CÁC ỨNG DỤNG CỦA CÔNG NGHỆ CẢM BIẾN KHÔNG DÂY VÀ ĐÁNH GIÁ BẰNG MÔ PHỎNG (Trang 33)

Các mạng cảm biến vi nhỏ phân tán không dây bao gồm một tập các node truyền thông, tại mỗi node kết hợp:

- Một hoặc nhiều cảm biến cho việc đo lường môi trường.

- Khả năng xử lý để xử lý dữ liệu cảm biến vào thông tin có giá trị cao và hoàn thành việc điều khiển nội bộ, và

- Một kênh vô tuyến để truyền phát thông tin đến và đi từ các node láng riềng và người sử dụng mở rộng.

Các chip CMOS nguồn mức thấp phân cực có thể tích hợp vào các máy thu phát vô tuyến để truyền thông, tính toán số, và các thành phần cảm biến MEMS, trên một khối đơn cung cấp trong dung tích cao cho mục đích chi phí thấp. Điều này cho phép một số lượng lớn các cảm biến mạng tích hợp vô tuyến được triển khai thật dễ dàng và nhanh chóng (ví dụ, không khí được tách ra từ các trường battle hoặc triển khai trên một khí cầu hoặc tàu không gian) hoặc hình thành cao các mạng cảm biến thừa, tự định cấu hình, chuyên dụng. Để không ràng buộc với các nhà phát triển, các node sử dụng các truyền thông không dây, và là năng lực thiết lập và vận hành mạng của riêng họ. Để kéo dài thời hạn sống của nguồn pin, tất cả các node và chức năng mạng được thiết kế để tiêu thụ công suất tối thiểu. Các hệ thống có năng lực và độ tin cậy cao được xây dựng ngoài số lượng lớn các node như vậy thật rẻ, riêng lẻ và sử dụng sự cộng tác giữa các node để

cung cấp độ tin cậy cao, thông tin chất lượng cao.Node WINS dựa trên một thiết kế module mở sử dụng kỹ thuật off-the-shelf thương mại sẵn có rộng lớn. Các node cảm biến vi nhỏ không dây kết hợp các năng lực cảm biến (giống như xung

động, âm thanh, từ) với một máy vô tuyến điện thoại cordless số thương mại và một bộ vi xử lý RISC thương mại nhúng trong một gói nhỏ. Khi các mạng này

được thiết kế với mục đính cho nguồn thấp, quá trình xử lý tín hiệu nhúng được thực hiện để giảm các yêu cầu về truyền thông. Ví dụ, nhiều nghìn byte của dữ

liệu nối tiếp thời gian thô từ các cảm biến dung động được giảm xuống một vài byte của thông tin biên độ và tần số sử dụng vi xử lý on-board. Thông tin được xử lý truyền thông chỉ giảm bớt yêu cầu về nguồn để vận chuyển thông tin nhờ

truyền thông dữ liệu đa trạm, xử lý tín hiệu coopera-tive động (ví dụ, quá trình beamforming với các node không gian ngẫu nhiên), và quản lý tài nguyên phân tán.

a/ Các yêu cu cho mng cm biến vi nh WINS

Mặt ngoài duy nhất của các mạng cảm biến vi nhỏ có thểđược kiểm tra với số

lượng quan trọng của các thiết bị nguyên mẫu rõ ràng được thiết kế cho mục

đích này, trái với các dạng điện toán chung, Một vài trong số các yêu cầu cho mạng WINS bao gồm:

- Yếu tố hình dạng nhỏ nhẹ;

- Ổn định với các dải nhiệt độ rộng và các điều kiện môi trường yêu cầu khác;

- Nguồn pin hoặc các nguồn năng lượng riêng một mình khác;

- Vận hành nguồn mức thấp và truy nhập với các máy điều khiển công suất nội;

- Một máy radio nguồn thấp nhỏ có rải tần đủ

- Một môi trường thực thi thời gian thực;

- Có khả năng viết mã trong một ngôn ngữ mức cao cho tổ chức và kiểm tra thuật toán nhanh chóng và;

- Một mức chi phí hợp lý.

Các node hỗ trợ các ứng dụng tại chiến trường (battle-field), và một loạt quản lý y tế, phương tiện giao thông và các ứng dụng bảo trì dựa trên điều kiện (condition-based) trong công nghiệp, quân đội và các nền tảng về không gian. Ví dụ, một lớp kiểm tra vận động và tìm tòi cho quá trình phát triển giám sát và chuẩn đoán thành phần, xử lý, và mức hệ thống) được xây dựng tại Rockwell Science Center. Lớp kiểm tra test bed này được cung cấp với các node WINS chúng kết hợp chặt chẽ với các cảm biến gia tốc, áp suất và nhiệt độ và các thuật toán cho các chuẩn đoán xử lý và chuyển động. Các thuật toán xử lý tín hiệu chạy trên các node riêng biệt cung cấp cho phát hiện mới bắt đầu của một loạt các lỗi. Các kiểu truyền thông mạng không dây cung cấp cho việc cài đặt đơn giản và các chuẩn đoán cộng tác trong các nhóm motor, máy bơm, van trong hệ

thống. Một trình duyệt dựa trên web cho phép toàn bộ hệ thống, và nhiều thành phần trong hệ thống được giám sát từ xa.

Các mạng cảm biến vi nhỏ phân tán sử dụng kiểu xử lý cộng tác và các giao thức truyền thông nguồn mức thấp. Viễn cảnh, giống như giám sát các vùng lớn,

các toà nhà hoặc các đại lộ, được hoàn thành nhờ thiết lập bố trí các cảm biến thành các vùng đóng được quan tâm trong một độ dày đặc cao. Khoảng đóng cho phép cảm biến nguồn thấp và các liên kết vô tuyến tầm ngắn. Các node có thể được định vị chính xác hoặc được phân tán trong các cấu hình ngẫu nhiên với khả năng nhận biết trong không gian (hoặc không cần điều đó) được kết hợp trong quá trình xử lý tín hiệu và các thuật toán truyền thông. Sự linh hoạt này tạo thành các node phù hợp với một phạm vi rộng lớn các ứng dụng, ví dụ, an ninh trong các doanh trại và khảo sát trước, giám sát chuyển động và các tài sản khác trong các nhà máy công nghiệp lớn, giám sát nhiều hệ thống con trên các phương tiện giao thông.

Các node WINS truyền thông với thế giới bên ngoài thông qua một mạng mức enterprise, giống như mọt mạng điều khiển xí nghiệp và/hoặc mạng Internet như đã chỉ ra hình 1.5. Truyền thông hai chiều được cung cấp thông suốt hệ thống, như mỗi node WINS hỗ trợ các truyền thông ngang hàng, hai chiều với các node láng riềng. các node WINS có thể là tĩnh hoặc di động chậm. Nhiều port cho truyền phát thông tin vào trong hoặc ra ngoài mạng cảm biến có thể được thiết lập. Một cổng port có thểđược mở rộng bởi cho phép kết nối các máy vô tuyến tầm xa tới một vài node hoặc thông qua một gateway đến một dạng hữu tuyến, giống như Internet, cho phép người sử dụng giám sát và điều khiển mạng từ xa. Một người sử dụng WINS có thể phát đi các lệnh thông qua một giao diện người sử dụng được thiết lập trên một máy tính cá nhân hoặc điều khiển cầm tay, cho phép người sử dụng điều khiển mạng các node, ví dụ thiết lập ngưỡng nhạy cảm cảm biến hoặc lập trình lại các node thông qua liên kết vô tuyến. Giao diện người sử dụng có thể hiển thị kích hoạt tại một trong các node cùng với tình trạng thể chất của chúng (ví dụ mức nguồn pin).

Bộ máy vô tuyến số trải phổ trong mỗi node WINS cung cấp một liên kết truyền thông vô tuyến mạnh, và cho phép tốc độ dữ liệu đạt đến 100kb/s qua phạm vi không quá 100m. Truyền thông ngang hàng hai chiều trong phạm vi các node trong một vùng lận cận nhỏ hỗ trợ các kiểu truyền dẫn dữ liệu multi-hop,

để tránh yêu cầu cho tất cả các node nằm trong phạm vi của một trạm gốc. Đặc

điểm này đưa cho người sử dụng một mức độ rất cao về tính mềm dẻo trong việc phát triển các node, vì vậy cho phép việc sắp xếp cảm biến chiến lược trong vùng quan tâm mà không cần ràng buộc về các kiểu truyền thông line-of-sight

đến một tập dữ liệu hoặc vị trí gateway. Khái niệm WINS mang đến một thuận lợi trên thực tế là các hop vô tuyến tầm ngắn có hiệu quả về nguồn hơn các hop

phạm vi lớn hơn theo hàm mũ trong cùng một khoảng cách. Điều khiển công suất trên mỗi một máy vô tuyến được sử dụng xa hơn nữa để tối thiểu hoá công suất truyền dẫn được cần thiết cho truyền thông đến các node láng riềng.

Hình 1.5: Một mô tả giản đồ của một kiến trúc hệ thống WINS

Mạng trong một hệ thống WINS có dáng vẻ với mạng dữ liệu vô tuyến thông thường với các lý do sau:

- Các node có năng lượng pin giới hạn, tạo nên các lược đồ TDMA hấp dẫn, nhưng phải yêu cầu các lược đồđịnh tuyến đặc biệt được tối ưu hoá mức tiêu thụ nguồn tối thiểu.

- Các node cảm biến có thể yêu cầu đồng bộ với cụm thời gian thời gian và quá trình sử lý tín hiệu kết hợp được thực hiện nhờ bảo trì nguồn, các thuật toán phân tán thời gian mạng.

- Các node có thể có nhiều kiểu cảm biến (ví dụ chấn động, âm thanh, IR…) mỗi kiểu với sự khác nhau về mức độ hội tụ (hay bao phủ), độ

chính xác, và mức tiêu thụ nguồn, và sự cho phép hỗn loạn cảm biến nội bộ.

- Các mẫu truyền lưu lượng được tạo ra của WINS nói chung có thể đoán trước, cho phép điều chỉnh sóng hiệu quả của các giao thức. Trong khi lưu lượng được tạo ra nhờ các sự kiện ngẫu nhiên (ví dụ các phát hiện đích, các lệnh người sử dụng), các đích và vì thể các tuyến được ràng buộc, như

là dung lượng bản tin và các tiềm năng cho phép. Thông tin phát hiện

được chuyển tiếp đến các cổng. Ở đó cũng có quá trình tổng hợp dữ liệu theo đường định tuyến mạng.

- Xử lý kết hợp, giống như quá trình beam-forming, yêu cầu nhóm multicast động của các node để các thiết lập chặt chẽ các sự kiện. Vì các

đích hoặc các hiện tượng khác gây nên các sự kiện có thể di động, tập các node cảm biến tích cực chúng sẽ thay đổi, chuyển động vị trí các phát sinh bản tin.

Yêu cầu cho việc triển khai node đơn giản bắt buộc mạng các node có khả

năng tự khai phá và tự định cấu hình. Các thủ tục tự định cấu hình cho việc boot-up và tự động tổ chức node vào mạng cho phép các node được thêm vào mạng hoạt động cho việc cải tiến mức độ bao phủ hoặc lấp đầy. Cách thức hoạt

động cho việc khôi phục từ các lỗi node cho phép mạng tự động phục hồi. WINS sử dụng một lược đồ hiệu quả nguồn, đa truy nhập phân chia theo thời gian hỗ trợ cho việc truyền thông multi-hop. Các thuật toán định tuyến tránh

được việc tạo ra các trung tâm tiêu thụ nguồn rằng kết quả tại các cảm biến trong một vùng lân cận làm tiêu hao năng lượng nguồn pin nhiều hơn lúc mạng trong trạng thái nghỉ nhanh chóng nguyên nhân là sự phân chia khi năng lượng của chúng bị suy yếu.

Nghiên cứu các thuật toán xử lý tín hiệu nguồn thấp là một phần không thể

thiếu của nỗ lực phát triển hệ thống và cho các ứng dụng quân sự (battlefield), với các trọng tâm chính sau:

- Phát hiện/phân loại đích: Các node WINS thực hiện các thuật toán phát hiện rung động trên cơ sở ngưỡng năng lượng. Kỹ thuật này là đối tượng

để các cảnh báo sai hướng đến sự quan tâm của các thuật toán ký hiệu phổ tinh vi hơn. Các thuật toán nguồn mức thấp để phân loại lớp sự kiện phát hiện giống như một sự kiện xung (ví dụ như một bước chân hoặc một viên đạn) hoặc phương tiện giao thông(ví dụ như bánh xe hoặc bánh xích, nhẹ hay nặng) được sử dụng.

- Sự hợp nhất cảm biến on-board: Bao gồm có rất nhiều cảm biến trên mỗi node cho phép hợp nhất các hiện tượng cảm biến khác nhau, chỉ dẫn chất lượng thông tin cao hơn và giảm tỷ lệ cảnh báo sai. Các thuật toán cho việc gắn các cảm biến rung động, âm thanh và từ trường trên một node

- Sự hợp nhất cảm biến multi-node: Các thuật toán tận dụng những ưu điểm của một mạng của các node riêng rẽ trong không gian đã mở rộng ra một dải các behavior cộng tác, mỗi một trong số các node từ bỏ chất lượng tách sóng chống lại việc tiêu thụ năng lượng. Các ví dụ về sự hợp nhất kết hợp có dải từ chứng thực quyết định mức cao (ví dụ bỏ phiếu bầu cử) đến hợp nhất các đặc điểm, và quá trình hình thành tín hiệu radio kết hợp đầy

đủ.

b/ Nn tng phát trin

Phần cứng trong mỗi node cảm biến vi nhỏ sử dụng kiểu thiết kế mở, thành module cho phép sát nhập vào một phạm vi các cảm biến. Các board liên kết

đuợc cung cấp bởi thiết bị kết nối nhỏ 40 chân. Các kết nối hình thành một bus hệ thống để cung cấp các đường cung cấp nguồn và điều khiển cho các board cảm biến, và hỗ trợ nhiều giao diện mở. Node WINS bao gồm một ngăn xếp các mạch điện cơ bản gồm bộ xử lý, máy vô tuyến và hệ thống cung cấp nguồn, đi cặp với các cảm biến yêu cầu. Các thành phần phần cứng gồm:

- Cảm biến âm học;

- Modul vô tuyến trải phổ DCT (Biến đổi Cosin rời rạc); - Modul xử lý StrongARM;

- Modul cung cấp nguồn nhiều mức điện áp;

- Máy dò âm thanh (cảm biến âm thanh) Mark 4 Product; - Hai nguồn chuẩn 9V;

Sơ đồ khối phần cứng cơ bản được chỉ ra ở hình 1.6 chỉ ra kết nối và phân tán nguồn giữa các module chủ yếu trong hệ thống.

a/ Modul x lý: module xử lý được xây dựng dựa trên bộ điều khiển nhúng Strong Arm SA1100 của Intel. SA1100 là một chip đa năng, bộ vi xử lý 32 bit RISC dựa trên công nghệ ARM. bộ xử lý trợ giúp một bộ nhớ đệm cấu trúc lệnh 16 bit, một bộ nhớ đệm dữ liệu 8kb, I/O nối tiếp và giao diện JTAG, tất cả được kết hợp trên một chip đơn. Lưu trữ chương trình và dữ liệu được cung cấp nhờ

bộ nhớ bootable flash 128kb SDRAM và 1Mb. Kết nối với các module cảm biến

được hoàn tất một cách dễ dàng nhờ sử dụng 4 dây Giao diện ngoại vi nối tiếp SPI. Một cổng RS232 được thêm vào module để thực hiện kết nối với các thiết bị bên ngoài. Bộ xử lý có 3 trạng thái: bình thường, rỗi, ngủ, có thể được điều khiển để giảm mức tiêu thụ nguồn.

b/ Modul vô tuyến: module vô tuyến sử dụng Conexant Systems, RDSSS9M Digital Cordless Telephone (DCT) chip-set bổ xung thực hiện liên kết truyền thông RF trải phổ tần số 900MHz. Chipset có một bộ vi điều khiển nhúng 65C02 để thực hiện tất cả các chức năng điều khiển và giám sát được yêu cầu cho truyền thông trải phổ chuỗi trực tiếp (12 chip/bit), rất tốt để trao đổi dữ liệu với module xử lý. Kênh vô tuyến hoạt động trên một trong 40 kênh của băng tần ISM, có thể lựa chọn nhờ bộ điều khiển. Lưu trữ chương trình và dữ liệu được cung cấp với 32kb SDRAM và 1Mb bộ nhớ bootable flash. Vi chương trình (phần sụn) nhúng được phát triển để hỗ trợ mạng đa truy nhập với phần hỗ trợ

bộ xử lý ARM cực tiểu. Board cũng cung cấp một bộ biến đổi ADC 4 bit cho việc giám sát điện thế pin. Phần RF của kênh vô tuyến được đóng gói giống như

một module đa chip nhỏ, giao diện với antenna xoắn trở kháng 50Ω và khả năng hoạt động tại nhiều mức nguồn truyền phát 1 đến 100 mW, có thể sử dụng các thuật toán truyền thông tối ưu hoá nguồn.

c/ Modul cm biến rung động: board cảm biến rung động sử dụng một máy dò Mark IV được thiết kế cho phát hiện tần số thấp của các sự kiện rung động. Khả năng cảm biến của máy dò này khoảng 15g. Mạch điện tận dụng một bộ

biến đổi Sigma-delta thiết bị tương tự AD 7714 mà kết quả nằm trong một clean, 20dbit tín hiệu từ 1Hz đến 400Hz. Mạch điện có thể lặp lại thích hợp cho phép sự so khớp pha giữa các node cảm biến để hỗ trợ quá trình xử lý kết hợp cộng tác, giống như quá trình beamforming.

Các module cảm biến khác bao gồm:

Một phần của tài liệu CÁC ỨNG DỤNG CỦA CÔNG NGHỆ CẢM BIẾN KHÔNG DÂY VÀ ĐÁNH GIÁ BẰNG MÔ PHỎNG (Trang 33)

Tải bản đầy đủ (PDF)

(100 trang)