Chương 4 TRUY N HP GÓI TC ẬỐ ĐỘ CAO (HSPA)

Một phần của tài liệu 3G-TS Nguyen Pham Anh Dung (Trang 70 - 100)

4.1. GIỚI THIỆU CHUNG

4.1.1. Mục đích chương

• Hiểu kiến trúc ngăn xếp giao thức giao diện vô tuyến HSDPA

• Hiểu được các sơ đồ lập biểu (Scheduler) và HARQ áp dụng cho HSPA • Hiểu được kiến trúc HSDPA và các kênh của nó

• Hiểu được kiến trúc HSUPA và các kênh của nó • Hiểu được chuyển giao trong HSDPA

4.1.2. Các chủ đề được trình bầy trong chương

• Tổng quan HSPA

• Kiến trúc giao diện vô tuyến của HSPA • HSDPA

• HSUPA

• Chuyển giao HSDPA

4.1.3. Hướng dẫn

• Học kỹ các tư liệu được trình bầy trong chương • Tham khảo các tài liệu tham khảo nếu cần

4.2. TỔNG QUAN TRUY NHẬP GÓI TỐC ĐỘ CAO (HSPA) 4.2.1. Mở đầu

Truy nhập gói tốc độ cao đường xuống (HSDPA: High Speed Down Link Packet Access) được 3GPP chuẩn hóa ra trong R5 với phiên bản tiêu chuẩn đầu tiên vào năm 2002. Truy nhập gói đường lên tốc độ cao (HSUPA) được 3GPP chuẩn hóa trong R6 và tháng 12 năm 2004. Cả hai HSDPA và HSUPA được gọi chung là HSPA. Các mạng HSDPA đầu tiên được đưa vào thương mại vào năm 2005 và HSUPA được đưa vào thương mại vào năm 2007. Các thông số tốc độ đỉnh của R6 HSPA được cho trong bảng 4.1.

Bảng 4.1. Các thông số tốc độ đỉnh R6 HSPA

HSDPA (R6) HSUPA (R6) Tốc độ đỉnh (Mbps) 14,4 5,7

Tốc độ số liệu đỉnh của HSDPA lúc đầu là 1,8Mbps và tăng đến 3,6 Mbps và 7,2Mbps vào năm 2006 và 2007, tiềm năng có thể đạt đến trên 14,4Mbps năm 2008. Trong giai đoạn đầu tốc độ đỉnh HSUPA là 1-2Mbps trong giai đoạn hai tốc độ này có thể đạt đến 4-5,7 Mbps vào năm 2008.

HSPA được triển khai trên WCDMA hoặc trên cùng một sóng mang hoặc sử dụng một sóng mang khác để đạt được dung lượng cao (xem hình 4.1).

Hình 4.1. Triển khai HSPA với sóng mang riêng (f2) hoặc chung sóng mang với WCDMA (f1).

HSPA chia sẻ chung hạ tầng mạng với WCDMA. Để nâng cấp WCDMA lên HSPA chỉ cần bổ sung phần mềm và một vài phần cứng nút B và RNC.

Lúc đầu HSPA được thiết kế cho các dịch vụ tốc độ cao phi thời gian thực, tuy nhiên R6 và R7 cải thiện hiệu suất của HSPA cho VoIP và các ứng dụng tương tự khác.

Khác với WCDMA trong đó tốc độ số liệu trên các giao diện như nhau (384 kbps cho tốc độ cực đại chẳng hạn), tốc độ số liệu HSPA trên các giao diện khác nhau. Hình 4.2 minh họa điều này cho HSDPA. Tốc độ đỉnh (14,4Mbps trên 2 ms) tại đầu cuối chỉ xẩy ra trong thời điểm điều kiện kênh truyền tốt vì thế tốc độ trung bình có thể không quá 3Mbps. Để đảm bảo truyền lưu lượng mang tính cụm này, nút cần có bộ đệm để lưu lại lưu lượng và bộ lập biểu để truyền lưu lượng này trên hạ tầng mạng.

Hình 4.2. Tốc độ số liệu khác nhau trên các giao diện (trường hợp HSDPA) 4.3. KIẾN TRÚC NGĂN XẾP GIAO THỨC GIAO DIỆN VÔ TUYẾN

HSPA CHO SỐ LIỆU NGƯỜI SỬ DỤNG

Hình 4.3 cho thấy kiến trúc giao diện vô tuyến HSDPA và HSUPA cho số liệu người sử dụng. Mặt phẳng báo hiệu không được thể hiện trên hình 4.3 (trong mặt phẳng này báo hiệu được nối đến RLC sau đó được đưa lên DCH hay HSDPA hoặc HSUPA). Số liệu từ các dịch vụ khác nhau được nén tiêu đề IP tại PDCP (Packet Data Convergence Protocol). MAC-hs (High Speed: tốc độ cao) thực hiện chức năng lập biểu

Đối với HSDPA chức năng MAC mới (MAC-hs) được đặt trong nút B để xử lý phát lại nhanh dựa trên HARQ (Hybrid Automatic Repeat Request: yêu cầu phát lại tự động lai ghép), lập biểu và ưu tiên.

Đối với HSUPA chức năng MAC mới (MAC-e) được đặt trong nút B để xử lý phát lại nhanh dựa trên HARQ, lập biểu và ưu tiên. Tại UE chức năng MAC-e mới được sử dụng để xử lý lập biểu và HARQ dưới sự điều khiển của MAC-e trong nút B. Chức năng MAC mới (MAC-es) được đặt trong RNC để sắp xếp lại thứ tự gói trước khi chuyển lên các lớp trên. Sự sắp xếp lại này là cần thiết, vì của chuyển giao mềm có thể dẫn đến các gói từ các nút B khác nhau đến RNC không theo thứ tự.

MAC-hs: High Speed MAC: MAC tốc độ cao

MAC-e: E-DCH MAC: MAC kênh E-DCH, MAC-es: thực thể MAC kênh E-DCH để sắp đặt lại thứ tự

Hình 4.3. Kiến trúc giao diện vô tuyến HSDPA và HSUPA cho số liệu người sử dụng

Hình 4.4 cho thấy các chức năng mới trong các phần tử của WCDMA khi đưa vào HSPA.

Hình 4.4. Các chức năng mới trong các phần tử của WCDMA khi đưa vào HSPA.

4.4. TRUY NHẬP GÓI TỐC ĐỘ CAO ĐƯỜNG XUỐNG (HSDPA)

HSDPA được thiết kế để tăng thông lượng số liệu gói đường xuống bằng cách kết hợp các công nghệ lớp vật lý: truyền dẫn kết hợp phát lại nhanh và thích ứng nhanh được truyền theo sự điều khiển của nút B.

4.4.1 Truyền dẫn kênh chia sẻ

Đặc điểm chủ yếu của HSDPA là truyền dẫn kênh chia sẻ. Trong truyền dẫn kênh chia sẻ, một bộ phận của tổng tài nguyên vô tuyến đường xuống khả dụng trong ô (công suất phát và mã định kênh trong WCDMA) được coi là tài nguyên chung được chia sẻ động theo thời gian giữa các người sử dụng. Truyền dẫn kênh chia sẻ được thực hiện thông qua kênh chia sẻ đường xuống tốc độ cao (HS-DSCH: High-Speed Dowlink Shared Channel). HS-DSCH cho phép cấp phát nhanh một bộ phận tài nguyên đường xuống để truyền số liệu cho một người sử dụng đặc thù. Phương pháp này phù hợp cho các ứng dụng số liệu gói thường được truyền theo dạng cụm và vì thể có các yêu cầu về tài nguyên thay đổi nhanh.

Cấu trúc cơ sở thời gian và mã của HS-DSCH được cho trên hình 4.5. Tài nguyên mã cho HS-DSCH bao gồm một tập mã định kênh có hệ số trải phổ 16 (xem phần trên của hình 4.5), trong đó số mã có thể sử dụng để lập cấu hình cho HS-DSCH nằm trong khoảng từ 1 đến 15. Các mã không dành cho HS-DSCH được sử dụng cho

mục đích khác, chẳng hạn cho báo hiệu điều khiển, các dịch vụ MBMS hay các dịch vụ chuyển mạch kênh.

Hình 4.5. Cấu trúc thời gian-mã của HS-DSCH

Phần dưới của hình 4.5 mô tả ấn định tài nguyên mã HS-DSCH cho từng người sử dụng trên cở sở TTI=2ms (TTI: Transmit Time Interval: Khoảng thời gian truyền dẫn). HSPDA sử dụng TTI ngắn để giảm trễ và cải thiện quá trình bám theo các thay đổi của kênh cho mục đích điều khiển tốc độ và lập biểu phụ thuộc kênh (sẽ xét trong phần dưới).

Ngoài việc được ấn định một bộ phận của tổng tài nguyên mã khả dụng, một phần tổng công suất khả dụng của ô phải được ấn định cho truyền dẫn HS-DSCH. Lưu ý rằng HS-DSCH không được điều khiển công suất mà được điều khiển tốc độ. Trong trường hợp sử dụng chung tần số với WCDMA, sau khi phục vụ các kênh WCDMA, phần công suất còn lại có thể được sử dụng cho HS-DSCH, điều này cho phép khai thác hiệu quả tổng tài nguyên công suất khả dụng.

4.4.2. Lập biểu phụ thuộc kênh

Lập biểu (Scheduler) điều khiển việc dành kênh chia sẻ cho người sử dụng nào tại một thời điểm cho trước. Bộ lập biểu này là một phần tử then chốt và quyết định rất lớn đến tổng hiệu năng của hệ thống, đặc biệt khi mạng có tải cao. Trong mỗi TTI, Bộ lập biểu quyết định HS-DSCH sẽ được phát đến người (hoặc các người) sử dụng nào kết hợp chặt chẽ với cơ chế điều khiển tốc độ (tại tốc độ số liệu nào).

Dung lượng hệ thống có thể được tăng đáng kể khi có xét đến các điều kiện kênh trong quyết định lập biểu: lập biểu phụ thuộc kênh. Vì trong một ô, các điều kiện của các đường truyền vô tuyến đối với các UE khác nhau thay đổi độc lập, nên tại từng thời điểm luôn luôn tồn tại một đường truyền vô tuyến có chất lượng kênh gần với đỉnh của nó (hình 4.6). Vì thế có thể truyền tốc độ số liệu cao đối với đường truyền vô tuyến này. Giải pháp này cho phép hệ thống đạt được dung lượng cao. Độ lợi nhận được khi truyền dẫn dành cho các người sử dụng có các điều kiện đường truyền vô tuyến thuận lợi

thường được gọi là phân tập đa người sử dụng và độ lợi này càng lớn khi thay đổi kênh càng lớn và số người sử dụng trong một ô càng lớn. Vì thế trái với quan điểm truyền thống rằng phađinh nhanh là hiệu ứng không mong muốn và rằng cần chống lại nó, bằng cách lập biểu phụ thuộc kênh phađinh có lợi và cần khai thác nó.

Chiến lược của bộ lập biểu thực tế là khai thác các thay đổi ngắn hạn (do phađinh đa đường) và các thay đổi nhiễu nhanh nhưng vẫn duy trì được tính công bằng dài hạn giữa các người sử dụng. Về nguyên tắc, sự mất công bằng dài hạn càng lớn thì dung lượng càng cao. Vì thế cần cân đối giữa tính công bằng và dung lượng.

Hình 4.6. Lập biểu phụ thuộc kênh cho HSDPA

Ngoài các điều kiện kênh, bộ lập biểu cũng cần xét đến các điều kiện lưu lượng. Chẳng hạn, sẽ vô nghĩa nếu lập biểu cho một người sử dụng không có số liệu đợi truyền dẫn cho dù điều kiện kênh của người sử dụng này tốt. Ngoài ra một số dịch vụ cần được cho mức ưu tiên cao hơn. Chẳng hạn các dịch vụ luồng đòi hỏi được đảm bảo tốc độ số liệu tương đối không đổi dài hạn, trong khi các dịch vụ nền như tải xuống không có yêu cầu gắt gao về tốc độ số liệu không đổi dài hạn.

Nguyên lý lập biểu của HSDPA được cho trên hình 4.7. Nút B đánh giá chất lượng kênh của từng người sử dụng HSDPA tích cực dựa trên thông tin phản hồi nhận được từ đường lên. Sau đó lập biểu và thích ứng đường truyền được tiến hành theo giải thuật lập biểu và sơ đồ ưu tiên người sử dụng.

Hình 4.7. Nguyên lý lập biểu HSDPA của nút B

4.4.3. Điều khiển tốc độ và điều chế bậc cao

Điều khiển tốc độ đã được coi là phương tiện thích ứng đường truyền cho các dịch vụ truyền số liệu hiệu quả hơn so với điều khiển công suất thường được sử dụng trong CDMA, đặc biệt là khi nó được sử dụng cùng với lập biểu phụ thuộc kênh.

Đối với HSDPA, điều khiển tốc độ được thực hiện bằng cách điều chỉnh động tỷ lệ mã hóa kênh và chọn lựa động giữa điều chế QPSK và 16QAM. Điều chế bậc cao như 16QAM cho phép đạt được mức độ sử dụng băng thông cao hơn QPSK nhưng đòi hỏi tỷ số tín hiệu trên tạp âm (Eb/N0) cao hơn. Vì thế 16 QAM chủ yếu chỉ hữu ích trong các điều kiện kênh thuận lơi. Nút B lựa chọn tốc độ số liệu độc lập cho từng TTI 2ms và cơ chế điều điều khiển tốc độ có thể bám các thay đổi kênh nhanh.

4.4.3.1. Mã hóa kênh HS-DSCH

Do mã hóa turbo có hiệu năng vượt trội mã hóa xơắn nên HS-DSCH chỉ sử dụng mã hóa turbo. Nguyên lý tổng quát của bộ mã hóa turbo như sau (hình 4.8a). Luồng số đưa vào bộ mã hóa turbo được chia thành ba nhánh, nhánh thứ nhất không được mã hóa và các bit ra của nhánh này được gọi là các bit hệ thống, nhánh thứ hai và thứ ba được mã hóa và các bit ra của chúng được gọi là các bit chẵn lẻ 1 và 2. Như vậy cứ một bit vào thì có ba bit ra, nên bộ mã hóa turbo này có tỷ lệ mã là r=1/3. Tỷ lệ này có thể giảm nếu ta bỏ bớt một số bit chẵn lẻ và quá trình này được gọi là đục lỗ (hình 4.8b).

Hình 4.8. Mã hóa turbo và đục lỗ 4.4.3.2. Điều chế HS-DSCH

HS-DSCH có thể sử dụng điều chế QPSK và 16-QAM. Chùm tín hiệu QPSK và 16QAM được cho trên hình 4.9.

Điều chế QPSK chỉ cho phép mỗi ký hiệu điều chế truyền được hai bit, trong khi đó điều chế 16QAM cho phép mỗi ký hiệu điều chế truyền được bốn bit vì thế 16QAM cho phép truyền tốc độ số liệu cao hơn. Tuy nhiên từ hình 4.9 ta thấy khoảng cách giữa hai điểm tín hiệu trong chùm tín hiệu 16QAM lại ngắn hơn khoảng cách này trong chùm tín hiệu QPSK và vì thế khả năng chịu nhiễu và tạp âm của 16QAM kém hơn QPSK.

Hình 4.9. Chùm tín hiệu đièu chế QPSK, 16-QAM và khoảng cách cực tiểu giữa hai điểm tín hiệu

4.4.3.3. Truyền dẫn thích ứng trên cơ sở điều chế và mã hóa kênh thích ứng

Truyền dẫn thích ứng là quá trình truyền dẫn trong đó tốc độ số liệu được thay đổi tùy thuộc vào chất lượng đường truyền: tốc độ đường truyền được tăng khi chất lượng đường truyền tốt hơn, ngược lại tốc độ đường truyền bị giảm. Để thay đổi tốc độ truyền phù hợp với chất lượng kênh, hệ thống thực hiện thay đổi sơ đồ điều chế và tỷ lệ mã nên phương pháp này được gọi là điều chế và mã hóa thích ứng (AMC: Adaptive Modulation and Coding). Chẳng hạn khi chất lượng đường truyền tốt hơn, hệ thống có thể tăng tốc độ truyền dẫn số liệu bằng cách chọn sơ đồ điều chế 16QAM và tăng tỷ lệ mã bằng 3/4 bằng cách đục lỗ, trái lại khi chất lượng truyền dẫn tồi hơn hệ thống có thể giảm tốc độ truyền dẫn bằng cách sử dụng sơ đồ điều chế QPSK và không đục lỗ để giảm tỷ lệ bằng 1/3.

4.4.4. HARQ với kết hợp mềm

HARQ với kết hợp mềm cho phép đầu cuối yêu cầu phát lại các khối thu mắc lỗi, đồng thời điều chỉnh mịn tỷ lệ mã hiệu dụng và bù trừ các lỗi gây ra do cơ chế thích ứng đường truyền. Đầu cuối giải mã từng khối truyền tải mã nó nhận được rồi báo cáo về nút B về việc giải mã thành công hay thất bại cứ 5ms một lần sau khi thu được khối này. Cách làm này cho phép phát lại nhanh chóng các khối số liệu thu không thành công và giảm đáng kể trễ liên quan đế phát lại so với phát hành R3.

Nguyên lý xử lý phát lại HSDPA được minh họa trên hình 4.10. Đầu tiên gói được nhận vào bộ nhớ đệm của nút B. Ngay cả khi gói đã được gửi đi nút B vẫn giữ gói này. Nếu UE giải mã thất bại nó lưu gói nhận được vào bộ nhớ đệm và gửi lệnh không công nhận (NAK) đến nút B. Nút B phát lại cả gói hoặc chỉ phần sửa lỗi của gói tùy thuộc vào gải thuâth kết hợp gói tại UE. UE kết hợp gói phát trước với gói được phát lại và giải mã. Trong trường hợp giải mã phía thu thất bại, nút B thực hiện phát lại mà không cần RNC tham gia. Máy di động thực hiện kết hợp các phát lại. Phát theo RNC chỉ thực hiện khi xẩy ra sự cố hoạt động lớp vật lý (lỗi báo hiệu chẳng hạn). Phát lại theo RNC sử dụng chế độ công nhận RLC, phát lại RLC không thường xuyên xẩy ra.

Hình 4.10. Nguyên lý xử lý phát lại của nút B

Không như HARQ truyền thống, trong kết hợp mềm, đầu cuối không loại bỏ thông tin mềm trong trường hợp nó không thể giải mã được khối truyền tải mà kết hợp thông tin mềm từ các lần phát trước đó với phát lại hiện thời để tăng xác suất giải mã thành công. Tăng phần dư (IR) được sử dụng làm cơ sở cho kết hợp mềm trong HSDPA, nghĩa là các lần phát lại có thể chứa các bit chẵn lẻ không có trong các lần phát trước. IR có thể cung cấp độ lợi đáng kể khi tỷ lệ mã đối với lần phát đầu cao vì các bit chẵn lẻ bổ sung làm giảm tổng tỷ lệ mã. Vì thế IR chủ yếu hữu ích trong tình trạng giới hạn băng thông khi đầu cuối ở gần trạm gốc và số lượng các mã định kênh chứ không phải công suất hạn chế tốc độ số liệu khả dụng. Nút B điều khiển tập các bit được mã hóa sẽ sử dụng để phát lại có xét đến dung lượng nhớ khả dụng của UE.

Các hình 4.11 cho thấy thí dụ về sử dụng HARQ sử dụng mã turbo cơ sở tỷ lệ mã r=1/3 cho kết hợp phần dư tăng. Trong lần phát đầu gói bao gồm tất cả các bit thông tin

Một phần của tài liệu 3G-TS Nguyen Pham Anh Dung (Trang 70 - 100)

Tải bản đầy đủ (DOC)

(100 trang)
w