Giao diện truy vấn

Một phần của tài liệu LUẬN VĂN: MỘT SỐ THUẬT TOÁN PHÂN HẠNG ẢNH PHỔ BIẾN VÀ ÁP DỤNG TRONG HỆ THỐNG TÌM KIẾM ẢNH LỚP TRÊN THỬ NGHIỆM pot (Trang 48 - 52)

MetaSEEk tìm kiếm ảnh dựa trên bốn máy tìm kiếm nguồn là: VisualSEEk, WebSEEk, QBIC, và Virage. Mỗi máy tìm kiếm nguồn đều có các tính năng cũng như các hạn chế riêng. VisualSEEk, QBIC và Virage cung cấp các phương thức cho việc tìm kiếm ảnh số dựa trên các đặc trưng trực quan bằng việc sử dụng các mẫu. QBIC và

39

VisualSEEk cho phép tùy chỉnh các tìm kiếm bằng việc sử dụng các phác thảo trực quan (ví dụ như chỉ định bảng màu) hoặc đưa vào một ảnh mẫu, trong khi đó Virage cho phép người dùng xác định trọng số độ quan trọng của mỗi đặc trưng trong tìm kiếm. Ngoài ra, QBIC còn cung cấp dịch vụ tìm kiếm ảnh dựa trên từ khóa. WebSEEk là một máy tìm kiếm và phân loại ảnh bán tự động. Nó hỗ trợ tìm kiếm cả dựa trên nội dung hiển thị và dựa trên văn bản, tuy nhiên MetaSEEk chỉ sử dụng khả năng tìm kiếm ảnh dựa trên văn bản của WebSEEk.

Hình 12. Giao diện hiển thị của MetaSEEk

MetaSEEk cung cấp giao diện cho phép tìm kiếm ảnh dựa trên cả nội dung hiển thị và từ khóa. Với truy vấn trực quan dựa trên nội dung hiển thị, người dùng có thể chọn bất kỳ ảnh mẫu nào từ các cơ sở dữ liệu được hỗ trợ, hoặc đưa vào một URL của một ảnh trên Web. Giao diện của MetaSEEk cho phép người dùng tùy chọn các đặc trưng để tìm kiếm. Hai đặc trưng có sẵn cho người dùng lựa chọn là: màu sắc và kết cấu. Người dùng có thể lựa chọn tìm kiếm ảnh dựa trên màu sắc hoặc dựa trên kết cấu hoặc dựa trên cả hai đặc trưng này. Như đã nói ở trên, với mỗi tùy chọn sẽ chỉ có một số máy tìm kiếm nguồn được sử dụng. Bộ điều vận nhận biết được khả năng tìm kiếm của mỗi cơ sở dữ liệu và sẽ quyết định gửi truy vấn tới các máy tìm kiếm nào.

Ngoài ra, người sử dụng còn có thể chỉ định thời gian tìm kiếm tối đa, số lượng các tùy chọn tìm kiếm, và thể loại quan tâm. Người sử dụng cũng có thể điểu chỉnh số lượng các truy vấn được gửi đến các công cụ tìm kiếm riêng rẽ tùy thuộc vào tải mạng.

40

Trong thời gian lưu lượng mạng thấp, người sử dụng có thể làm tăng các truy vấn đồng thời. Việc chờ đợi trong một khoảng thời gian tối đa ngăn không cho hệ thống bị chậm trễ từ việc hồi đáp chậm trễ của các máy tìm kiếm nguồn.

3.2.3. Bộ điều vận

Mỗi khi nhận được một truy vấn từ phía người dùng, bộ điều vận chọn các máy tìm kiếm nguồn và tùy chọn tìm kiếm nguồn để gửi câu truy vấn đến. Một tùy chọn tìm kiếm là một phương pháp truy vấn trên một công cụ tìm kiếm cụ thể. Ví dụ, một truy vấn gửi tới VisualSEEk yêu cầu tìm kiếm ảnh dựa trên kết cấu là một tùy chọn tìm kiếm. Bộ điều vận tạo quyết định dựa trên loại truy vấn được gửi đến máy tìm kiếm lớp trên và cơ sở dữ liệu chứa điểm số chỉ khả năng thực thi của các truy vấn trong quá khứ. Nếu người dùng yêu cầu một ảnh mẫu ngẫu nhiên hay một từ khóa truy vấn, hệ thống đơn giản chỉ đặt ra các câu hỏi tới các máy tìm kiếm mà hỗ trợ những hành động này (QBIC, Virage và VisualSEEk hỗ trợ truy vấn mẫu ngẫu nhiên, QBIC và WebSEEk hỗ trợ truy vấn dạng từ khóa).

Với các truy vấn trực quan dựa trên nội dung, việc lựa chọn máy tìm kiếm nguồn là dựa trên cơ sở dữ liệu hiệu năng. Cơ sở dữ liệu này chứa điểm số chỉ ra thế nào là tốt hay thế nào là xấu với mỗi tùy chọn tìm kiếm đã được thực hiện trong quá khứ trên các máy tìm kiếm với mọi ảnh truy vấn. Một truy vấn trực quan được xác định bởi một ảnh, một nhóm các đặc trưng, và một chủ đề. Khi nhận được một truy vấn, MetaSEEk tìm kiếm trong cơ sở dữ liệu hiệu năng và tìm kiếm điểm số hiệu năng của ảnh truy vấn. Trong cấu trúc của cơ sở dữ liệu nói trên, mỗi hàng tương ứng với một truy vấn đã được thực hiện trước đó. Mỗi cột điểm số tương ứng với một tùy chọn tìm kiếm. Bộ điều vận sẽ quyết định chọn các tùy chọn tìm kiếm có điểm số cao nhất mà phù hợp với những yêu cầu của người dùng. MetaSEEk đánh giá chất lượng của các kết quả trả về của mỗi tùy chọn tìm kiếm dựa trên phản hồi của người dùng. Một thủ tục thăm dò tự động được thực hiện để thiết lập điểm số hiệu năng ban đầu nhằm xây dựng một cơ sở dữ liệu hiệu năng dựa trên một số mẫu huấn luyện.

Đối với các truy vấn mới không có điểm số hiệu năng được ghi trong cơ sở dữ liệu, các tác giả đưa ra một giải pháp đơn giản nhất là chọn ngẫu nhiên một tùy chọn tìm kiếm để thực hiện truy vấn. Ngoài ra, hệ thống còn xét tới một hướng tiếp cận khác là liên hệ các truy vấn mới với các truy vấn trong quá khứ mà ta đã có thông tin về hiệu suất thực thi. Các ảnh trong cơ sở dữ liệu được phân thành các chủ đề dựa trên nội dung hiển thị của chúng. Mỗi chủ đề gồm các nhóm đặc trưng: màu sắc, kết cấu và

41

cả hai loại đặc trưng trên. Khi truy vấn của người dùng là một truy vấn mới, hệ thống tải ảnh về và kết hợp nó với các cụm tương ứng để nhận được một danh sách các cụm phù hợp nhất. Các ảnh được chọn từ một số cụm gần giống nhất sẽ được hiển thị cho người dùng. Bộ điều vận có thể chọn các máy tìm kiếm phù hợp dựa trên điểm số hiệu năng trung bình của cụm được chọn bởi người sử dụng. Cuối cùng, ảnh mới sẽ được lưu vào cơ sở dữ liệu để sử dụng cho những truy vấn lần sau.

MetaSEEk sử dụng thuật toán phân cụm K-means để phân cụm các ảnh trong cơ sở dữ liệu. Cứ sau mỗi khi có 10 ảnh mới được lưu vào cơ sở dữ liệu thì hệ thống sẽ thực hiện thuật toán phân cụm. Màu sắc và kết cấu là các đặc trưng được sử dụng cho việc phân cụm.

Phân loại theo chủ đề

Hệ thống phân nhóm các ảnh theo chủ đề để ràng buộc phạm vi tìm kiếm. Cơ sở dữ liệu của các máy tìm kiếm nguồn thường có một số loại riêng biệt. Ví dụ, cơ sở dữ liệu của QBIC bao gồm phần lớn là ảnh về con người, trong khi đó cơ sở dữ liệu của Virage có nhiều thể loại khác. Nếu người dùng quan tâm tìm kiếm ảnh của một em bé, có nhiều khả năng QBIC sẽ mang lại kết quả thích hợp hơn trong thời gian ngắn hơn. Hệ thống tận dụng lợi thế của thực tế này bằng cách cung cấp khả năng tìm kiếm trong một phạm vi của một chủ đề cụ thể. Nếu người sử dụng chọn một chù đề cụ thể, thì người đó giả định rằng chỉ tìm kiếm các ảnh trong chủ đề đó.

Cấu trúc cơ sở dữ liệu

Cơ sở dữ liệu của MetaSEEk chứa các vector đặc trưng (màu sắc và kết cấu), điểm số hiệu suất, các phân cụm, và các chủ đề cho tất cả các ảnh mà đã được truy vấn trên MetaSEEk. Tất cả những thông tin này là cần thiết cho bộ điều vận trong việc lựa chọn các máy tìm kiếm thích hợp cho các truy vấn đầu vào. Cơ sở dữ liệu được tổ chức theo cấu trúc phân cấp. Đầu tiên các ảnh được phân loại theo chủ đề dựa trên ngữ nghĩa của chúng (ví dụ như loài vật, con người). Việc phân loại ảnh vào chủ đề nào là do người dùng thực hiện. Thuật toán K-means được sử dụng để phân cụm các ảnh trong mỗi chủ đề vào các lớp dựa trên các đặc trưng về màu sắc, kết cấu hoặc cả hai loại đặc trưng.

42

Hình 13. Cấu trúc phân cấp của cơ sở dữ liệu

Tại tầng thấp nhất của cơ sở dữ liệu, mỗi ảnh có một bản ghi chứa thông tin như trong bảng 1. Trong đó cột bên trái là các tùy chọn tìm kiếm còn cột bên phải là điểm số tương ứng đối với mỗi tùy chọn. Các điểm số này được cập nhật mỗi khi ảnh đó được truy vấn dựa vào phản hồi của người sử dụng.

Bảng 1. Ví dụ về bản ghi của một ảnh trong cơ sở dữ liệu

Một phần của tài liệu LUẬN VĂN: MỘT SỐ THUẬT TOÁN PHÂN HẠNG ẢNH PHỔ BIẾN VÀ ÁP DỤNG TRONG HỆ THỐNG TÌM KIẾM ẢNH LỚP TRÊN THỬ NGHIỆM pot (Trang 48 - 52)

Tải bản đầy đủ (PDF)

(75 trang)