Điện di hai chiều là phương pháp nghiên cứu protein truyền thống, tuy nhiên đến nay vẫn có nhiều ưu thế như có thể xác định, so sánh hình ảnh tương quan của các mẫu với hàng nghìn protein ở các trạng thái khác nhau (dạng bình thường, bệnh lý, nghiên cứu mức độ biểu hiện của các protein khác nhau, đánh giá khả năng phân tách protein từ mẫu huyết thanh nguyên và huyết thanh sau khi được xử lý loại các protein hàm lượng lớn ...) [19,20,21].
Mẫu protein huyết thanh sau khi được xử lý biến tính nhiệt và thu dịch nổi đã loại bỏ được hầu hết các protein có hàm lượng lớn, kém bền nhiệt và trở nên đơn giản hơn nhiều so với mẫu huyết thanh ban đầu, tạo điều kiện cho các protein phân tách tốt hơn trên bản điện di 2-DE. Tuy nhiên, trong dung dịch protein thu được còn chứa đệm ETP mà các thành phần có mặt trong đó có thể gây ảnh hưởng đáng kể đến quá trình chạy điện di 2-DE.
Do đó, để đánh giá ảnh hưởng của các thành phần này và tối ưu hóa kết quả của thí nghiệm điện di 2-DE, chúng tôi tiến hành khảo sát thí nghiệm này trên thanh Strip pH 3-10 với kích thước 7cm theo quy trình đã nêu ở mục 2.2.5, bản điện di được nhuộm màu bằng Comassive Blue Brilliant R-250.
Trong quá trình tiến hành điện di IEF, chúng tôi nhận thấy các thông số hiệu điện thế (Voltage) trong các bước thí nghiệm đều không đạt được như chương trình đã đặt (xem bảng 5). Tại một số thời điểm, sự gia tăng tuyến tính của hiệu điện thế bị gián đoạn kéo dài, do đó hiệu điện thế của dòng điện không đạt được các giá trị đã chọn, làm tăng thời gian chạy thí nghiệm và gây ra những ảnh hưởng không mong muốn đến kết quả điện di.
Bảng 7: Sự biến đổi của hiệu điện thế theo thời gian
(A) theo chương trình cài đặt ; (B) trong thực tế theo dõi
Voltage Time Volt - Hours Ramp Step 1 250 20 min --- Linear
Step 2 4000 2hr --- Linear
Step 3 4000 --- 10000 V - hr Rapid
Total 5hr 14000 V - hr
A
Step 1 Step 2 Step 3
Phút
thứ 8 10 15 20 90 95 105 140 180 188 3000 12000
Voltage 17 59 23 27 140 150 207 122 364 270 127 1036
B
Kết quả ảnh điện di 2-DE thu được (hình 12) cũng cho thấy sự phân tách protein chưa tốt, nhiều protein xuất hiện ở dạng vệt – dải (được đánh số 1, 2, 3 ở trên hình)
3 pH 10
Hình 12: Ảnh điện di 2-DE phân đoạn protein bền nhiệt. HW: vùng khối lượng phân thử cao; LW: vùng khối lượng phân tử thấp
Tất cả các đặc điểm này cho thấy đã có sự ảnh hưởng của các thành phần đệm trong mẫu đến quá trình điện di IEF, đặc biệt là rất phù hợp với các nghiên cứu về ảnh hưởng của Tris ở nồng độ cao đến điện di IEF và 2-DE (hình 3)[17], trong đó đặc trưng nổi bật là vùng hội tụ của Tris (được đánh dấu bằng mũi tên đỏ trên ảnh) ở khoảng pH 8 mà tại đó có sự tập hợp của các protein thành một hàng dọc.
Tris là một phân tử nhỏ hơi base, có pKa ở 20oC là 8,3 và có thể thay đổi theo nhiệt độ [17, 18]. Trong quá trình điện di IEF, nồng độ Tris được tăng lên nhanh chóng do có sự hội tụ tại pKa của nó, quá trình này diễn ra nhanh hơn nhiều so với sự hội tụ của các protein. Khi đó Tris sẽ tạo ra một vùng hội tụ cục bộ (local) gọi là Tris zone mà tại đó, tính dẫn điện của dung dịch tăng mạnh làm sụt giảm điện thế ở các vùng lân cận [17]. Kết quả là sự dịch chuyển trong điện trường của các protein đến điểm đẳng điện bị cản trở và phần lớn protein sẽ bị tập hợp thành một hàng dọc tại vùng hội tụ của Tris (Tris zone) (hình 13).
Hình 13: Sự hội tụ của Tris trên bản điện di 2-DE tại pH ứng với pKa của nó
Như vậy, việc sử dụng Tris ở nồng độ cao là một yếu tố cần thiết để thu được các protein bền nhiệt trong quá trình biến tính. Tuy nhiên, sự có mặt của nó trong quá trình điện di IEF có thể gây ra những ảnh hưởng không mong muốn đến sự hội tụ của các protein tại pI tương ứng của chúng.
Nhằm loại bỏ những ảnh hưởng này của Tris, chúng tôi đã thử nghiệm nghiên cứu và đề ra 2 chiến lược như sau:
(1) Thu hẹp dải pH dùng trong điện di IEF sao cho pH < 8.
(2) Loại bỏ Tris ra khỏi mẫu bằng phương pháp kết tủa protein và tiếp tục tiến hành điện di 2-DE trên dải pH 3-10.