Phương pháp phân tích nhiệt [7, 8]

Một phần của tài liệu Nghiên cứu chế tạo vật liệu màng mỏng chứa Platin, Thiếc trên nền dẫn điện và hoạt tính điện hóa của chúng (Trang 25)

Trong quá trình gia nhiệt, các mẫu rắn có thể xảy ra các quá trình biến đổi hoá lý khác nhau như: sự phá vỡ mạng tinh thể, sự biến đổi đa hình, sự tạo thành và nóng chảy của các dung dịch rắn, sự thoát khí, bay hơi, thăng hoa của các tướng hoá học...Phương pháp phân tích nhiệt là một nhóm các kỹ thuật trong đó một hoặc một vài thuộc tính của mẫu được khảo sát theo nhiệt độ. Một số kỹ thuật cơ bản trong phân tích nhiệt là: Phân tích nhiệt vi sai (Differencial Thermal Analysis-DTA), Phân tích thay đổi trọng lượng (khối lượng) theo nhiệt độ (Thermal Grevimetric Analysis- TG), Nhiệt lượng vi sai quét (DSC), Phân tích cơ-nhiệt (TMA), hai kỹ thuật đo phổ biến nhất hiện nay là DTA và TG.

Giản đồ nhiệt DTA mô tả sự phụ thuộc chênh lệch nhiệt độ giữa mẫu đo và mẫu so sánh theo nhiệt độ hoặc theo thời gian khi nhiệt độ tác động lên mẫu đo được quét theo chương trình. Thông tin cơ bản nhận được từ giản đồ nhiệt DTA là các hiệu ứng nhiệt: hiệu ứng thu nhiệt ứng với xuất hiện mức cực tiểu, hiệu ứng toả nhiệt ứng với xuất hiện mức cực đại trên đường DTA, chuyển pha (chuyển thể thuỷ tinh).

Giản đồ nhiệt TG thể hiện sự phụ thuộc khối lượng theo nhiệt độ hay thời gian khi nhiệt tác động lên mẫu theo chương trình quét. Từ giản đồ TG có thể nhận biết các quá trình biến đổi có kèm theo thay đổi khối lượng, các quá trình chuyển pha từ không có từ tính sang pha có từ tính hay ngược lại.

Ngoài ra còn có giản đồ nhiệt DTG, giản đồ này thu được từ giản đồ gốc TG bằng phép lấy vi phân theo thời gian. Đây thuần tuý là xử lý toán học. Đạo hàm DTG sẽ thể hiện vận tốc của quá trình biến đổi khối lượng, cực trị trên giản đồ nhiệt DTG tương ứng với điểm uốn trên giản đồ TG. Vận tốc biến đổi khối lượng thường biểu diễn theo mg/phút. Giản đồ nhiệt DTG cung cấp thêm thông tin bổ sung về quá trình biến đổi khối lượng. Nó có ích khi chúng ta quan tâm tới khía cạnh động học của quá trình biến đổi xảy ra trong hệ.Ngoài ra, Giản đồ DTG nói chung thường cải thiện đáng kể khả năng phân giải của dữ liệu: Khi các quá trình xảy ra rất sát nhau, thậm chí chồng chập, che phủ nhau có thể tách rời ra bằng giải pháp này. Đây là giản đồ thu được từ giản đồ TG và làm giàu thông tin cho giản đồ TG, vì vậy, nó được dùng kết hợp với TG.

Để khai thác triệt để thông tin của các giản đồ nhiệt, người ta thường dùng giản đồ kết hợp TG+DTG+DTA. Sự bổ sung thông tin giữa các giản đồ sẽ làm cho việc đồng nhất các quá trình nhiệt xảy ra trong hệ trở nên dễ dàng hơn.

Dựa vào đường phân tích nhiệt, chúng ta có thể thu được những dữ kiện về một số tính chất của chất rắn như:

• Độ bền nhiệt của chất nghiên cứu, các yếu tố ảnh hưởng tới độ bền nhiệt.

• Xác định được chất có hay không chứa nước. Chất chứa nước có hiệu ứng mất nước là hiệu ứng thu nhiệt. Nhiệt độ của hiệu ứng mất nước kết tinh này thường thấp hơn nhiệt độ của hiệu ứng mất nước cấu trúc.

• Hiện tượng đồng phân hình học, hiện tượng đa hình của chất thường kèm theo hiệu ứng toả nhiệt.

CH¦¥NG 3. THùC NGHIÖM 3.1. Chuẩn bị thí nghiệm

3.1.1. Hóa chất

H2PtCl6 loại PA của Merck Ethylene glycol (EG) loại AR của Trung Quốc Citric Acid (CA) loại AR của Trung Quốc Iso propanol loại AR của Trung Quốc Axit sunfuric đặc loại AR của Trung Quốc C2H5OH loại PA của Merck Axit Oxalic.2H2O loại AR của Trung Quốc

Nền C xốp kích thước 1cm×1cm

Nước cất và các loại hóa chất khác. Điện cực Platin phẳng: diện tích 0,8 cm2

3.1.2. Dụng cụ, thiết bị

Cân kỹ thuật hai số, Cân kỹ thuật bốn số

Tủ sấy, lò nung, bình định mức và một số thực nhiệm khác

Thực nghiệm TA và DTA tiến hành trên thiết bị TG-50H và DTA-50H (Shimadzu-Japan) thuộc khoa Hóa, trường đại học khoa học tự nhiên, ĐHQG Hà Nội. Điều kiện thực nghiệm: tốc độ quét nhiệt là 10oC/phút, môt trường không khí. Chén để mẫu làm bằng hợp kim Pt.

Ảnh SEM của mẫu được chụp qua kính hiển vi điện tử quét trên máy Hitachi S-4800 tạị phòng thí nghiệm trọng điểm - viện khoa học Việt Nam.

Phổ XRD được chụp trên máy X-Ray SIEMEN D5005 của Đức tại Khoa Hóa học, Đại học Khoa học Tự Nhiên, ống phát tia CuKa (λ = 1,5406 Ǻ) và tia MoKa (λ = 0,70900 Ǻ) có lọc tia, điện áp 35 KV, cường độ dòng ống phát 30 mA, góc quét 2θ từ 200 – 800, tốc độ góc quét 0,2 độ/ phút.

Tính chất điện hóa của điện cực được khảo sát trên máy PGS HH8 được ghép nối với máy tính tại phòng điện hóa, trường Đại Học Khoa học Tự nhiên

U1= -0,1V, U2=1,3V

3.2. Nội dung thực nghiệm

3.2.1 Chế tạo điện cực graphit xốp

Tấm graphit công nghiệp sau khi đã được gia công đến hình dáng và kích thước của một điện cực (có diện tích bề mặt là 1cm2) được mài nhẵn và bóng bằng giấy ráp mịn loại C1000 và C2000. Sau đó, điện cực Graphit đã mài nhẵn được

Potentiostat PGS-HH8 CE

WE RE

Điện cực so sánh (RE): Calomen 3- Điện cực làm việc(WE) Điện cực phụ trợ (CE):Platin 4- Dung dịch nghiên cứu

Hình 12: Sơ đồ thiết bị đo Potentiostat PGS-HH8

2

1 3

4

Máy in

ngâm trong dung dịch H2SO4 98% ở 600C nhằm mục đích oxi hóa các tạp chất hữu cơ có trong Graphit.

3.2.2. Tạo các dung dịch chất mang (Polymeric Precursor)

Các dung dịch chất mang được tính toán theo tỷ lệ số mol Pt:Sn = 50:50 Dung dịch Pt-resin gồm:

Axit Citric (CA) = 0,234g Etylen Glycol (EG) = 0,27 ml H2PtCl6 1g/25ml = 5ml Dung dịch Sn-resin gồm:

Axit Citric (CA) = 0,234g Etylen Glycol (EG) = 0,827ml

SnCl2.2H2O = 10 ml (SnCl2 0,1M trong iso-propanol) Cách pha dung dịch: Hỗn hợp EG và CA được đun nóng ở nhiệt độ khoảng 70oC cho đến khi CA tan hết. Sau đó, cho 10ml SnCl2 0,1M trong isopropanol và 5 ml H2PtCl6 1g/25ml vào 2 hỗn hợp CA:EG tương ứng và đun nóng các hỗn hợp thu được ở khoảng 90oC trong 15 phút. Hỗn hợp Pt-resin và Sn-resin thu được tiếp tục đem siêu âm trong 10 phút với mục đích thu được dung dịch đồng nhất

Để thu được hỗn hợp PtSn-resin, ta lấy một nửa lượng Pt-resin và Sn-resin trộn với nhau và tiến hành siêu âm trong 5 phút

Như vậy, bằng cách làm trên chúng tôi đã thu được các dung dịch sau: Dung dịch Pt-resin

Dung dịch Sn-resin Dung dịch PtSn-resin

CH¦¥NG 4. KÕT QU¶ Vµ TH¶O LUËN

4.1. Chế tạo và tính chất điện hóa của điện cực graphit xốp 4.1.1. Chế tạo vật liệu graphit xốp để làm điện cực.

Chúng tôi tiến hành xử lí các điện cực Graphit trong các thời gian khác nhau và so sánh độ xốp của điện cực thu được.

4.1.1.2. Ảnh hưởng của thời gian đến tỷ khối trung bình của graphit

Để biết độ xốp của các điện cực, ta tiến hành cân khối lượng điện cực trước khi cho vào axit và sau đó rửa hết axit, sấy khô. Ta sẽ tính được độ giảm khối lượng của điện cực như sau:

Bảng2: Sự thay đổi của khối lượng trung bình của graphit theo thời gian xử lý.

Thời gian xử lý (giờ) 0 10 24 48 72 80

Khối lượng trung bình của

Graphit trước khi xử lý (g) 0,4128 0,4086 0,4286 0,4578 0,4146 0,4231 Khối lượng trung bình của

Graphit sau khi xử lý (g) 0,4128 0,4080 0,4272 0,4540 0,4095 0,4180 Độ giảm khối lượng (g) 0 0,0006 0,0014 0,0038 0,0051 0,0051 Độ giảm khối lượng riêng

trung bình (g/cm3) 0 0,006 0,014 0,038 0,051 0,051

Biểu đồ của độ giảm khối lượng riêng trung bình của các điện cực theo thời gian ngâm:

Nhận xét:

- Ở cùng điều kiện nhiệt độ, thời gian ngâm càng lâu thì độ giảm khối lượng của vật liệu graphit càng lớn, độ xốp của vật liệu graphit tăng.

- Thời gian xử lý 72h cho độ giảm khối lượng tương đương với thời gian xử lý 80h, các điện cực sử dụng làm thí nghiệm được xử lý 72h.

Chúng tôi tiến hành chụp SEM các mẫu Graphit trước và sau khi xử lí thu được kết quả như sau:

Graphit trơ Graphit xốp

Như vậy mẫu graphit công nghiệp có bề mặt mịn còn mẫu graphit sau khi qua quá trình xử lí bằng axit có bề mặt rất xốp, tạo nhiều lỗ hốc. Điện cực xử lý ở các thời gian khác nhau thì độ xốp cũng khác nhau. Thời gian xử lý càng lâu thì độ xốp càng lớn, diện tích bề mặt điện cực càng lớn nên tính chất điện hóa của điện cực sẽ tốt hơn. Điều này được chứng minh ở các phần nghiên cứu sau.

4.1.2. Ảnh hưởng của độ xốp đến tính chất điện hóa của graphit trong dung dịch H2SO4 0,5M.

Chúng tôi tiến hành đo đường phân cực của điện cực, so sánh tính chất điện hóa của graphit xốp và graphit không xốp trong dung dịch H2SO4 0,5M. Kết quả như hình 13.

Hình 13: Đường phân cực i-U(V)của các điện cực trong dung dịch H2SO4 0,5M 1- Graphit 2-Graphit xốp

Trong môi trường H2SO4 0,5M, xem graphit là điện cực trơ. Thế thoát hiđro và oxi trên các điện cực khi dịch chuyển phía âm hoặc dương có khác nhau (xem bảng 3).

Vật liệu graphit Điện cực Graphit xốp

Thế thoát hiđro (V) SCE -0,42 -0,38

Thế thoát oxi (V) SCE 1,2 0,7

Bảng 3: Các giá trị thế thoát oxi và hiđro trên các điện cực nghiên cứu

Thế thoát hiđro trên điện cực graphit xốp dương hơn so với graphit, còn thế thoát oxi trên điện cực graphit xốp nhỏ hơn so với graphit. Điều đó chứng tỏ khả năng hoạt động của điện cực graphit xốp cao hơn so với graphit, do diện tích bề mặt của graphit được tăng lên sau khi xử lí.

4.1.3. Khả năng trao đổi điện tử của điện cực graphit xốp và graphit đối với phản ứng oxi hóa – khử.

Nhằm mục đích đánh giá khả năng trao đổi e trên nền dẫn điện graphit xốp và graphit, chúng tôi tiến hành đo đường phân cực của các điện cực trong dung dịch Ferro-Ferrixyanua kali. Trên các điện cực khảo sát xảy ra phản ứng:

−+ −

3 4

6 6

Fe(CN) 1e ƒ Fe(CN) (1) Đường cong phân cực vòng được thể hiện trên hình 14.

Hình 14: Đường phân cực vòng của điện cực Graphit và Graphit xốp trong dung dịch ferri-ferro xyanua kali 0,1M trong dung dịch NaOH 0,1M

1. Graphit 2. Graphit xốp

Các điện cực graphit và graphit xốp là chất dẫn điện trơ đối với phản ứng (1), song khả năng dẫn điện khác nhau. Điều này được thể hiện trên bảng 3.

Điện cực E (V)pa ( 2) pa i mA cm E (V)pc ( 2) pc i mA cm Graphit 0,38 2,8 0,03 2,2 Graphit xốp 0,39 6,2 0,03 5,0 Ghi chú:

E (V)pa : Giá trị thế ứng với cực trị anot của đường phân cực;

E (V)pc : Giá trị thế ứng với cực trị catot của đường phân cực;

( 2)

pa

i mA cm

: Mật độ dòng cực trị anot của đường phân cực; ( 2)

pc

i mA cm

: Mật độ dòng cực trị catot của đường phân cực. Từ các kết quả trên cho ta nhận xét sau:

- Thế khử Epc và thế oxi hóa Epa của sự chuyển hóa Fe3+ ƒ Fe2+ của phản ứng (1) trên cả 2 điện cực tương ứng gần bằng nhau. Điều đó chứng tỏ các điện cực graphit xốp và graphit là các điện cực trơ dẫn điện.

- Mặt khác, các giá trị mật độ dòng cực đại tại anot (ipa) và catot (ipc) của các điện cực nghiên cứu trong hệ phản ứng (1) là khác nhau và giá trị cực đại ipc, ipa trên graphit xốp tăng hơn 2 lần so với graphit. Điều đó chứng tỏ rằng

sau khi xử lý, điện cực graphit xốp có hoạt tính điện hóa cao hơn graphit không hoạt hóa.

Những kết quả thí nghiệm trên chứng tỏ rằng graphit công nghiệp chuyển thành graphit xốp thì khả năng dẫn điện tăng lên và quá thế thoát oxi và hiđro bị giảm khi điện cực làm việc trong môi trường H2SO4 0,5M. Mặt khác cũng khẳng định được rằng phương pháp xử lý tạo graphit xốp đã nêu trên là có hiệu quả.

4.2. Tạo lớp phủ Platin (Pt/C) và hệ Platin, thiếc (PtSn/C) trên nền Graphit xốp.

4.2.1. Khảo sát điều kiện nhiệt độ phân hủy để tạo lớp Pt, PtSn trên nền dẫn điện graphit xốp và chế tạo các lớp phủ Pt, PtSn trên nền dẫn điện graphit xốp.

Sử dụng phương pháp PPM để tạo màng Platin; Platin, thiếc trên nền graphit xốp thì việc nghiên cứu nhiệt độ phân hủy của muối thiếc clorua và axit cloroplatinic (H2PtCl6.6H2O) là rất quan trọng. Để có được nhiệt độ phân hủy của các loại Pt- Resin, Sn-Resin, chúng tôi sử dụng phương pháp phân tích nhiệt và tham khảo một số tài liệu [10] để ra được nhiệt độ phân hủy thích hợp. Các kết quả được thể hiện trên các hình 15 và hình 16. Furnace temperature /°C 0 100 200 300 400 500 600 700 TG/% -56 -42 -28 -14 0 14 28 42 56 dTG/% /min -50 -40 -30 -20 -10 0 HeatFlow/µV -50 -40 -30 -20 -10 0 10 20 Mass variation: -18.93 % Mass variation: -40.47 % Peak :158.37 °C Peak :255.99 °C Figure: 31/03/2009 Mass (mg): 37.55

Crucible:PT 100 µl Atmosphere:Air

Experiment:SnCl2.2H2O

Procedure:30 ----> 800C (10C.min-1) (Zone 2)

Labsys TG

Hình 15: Giản đồ phân tích nhiệt của SnCl2.2H2O

Hình [15] là giản đồ phân tích nhiệt của SnCl2.2H2O. Quan sát giản đồ ta thấy: SnCl2 bị phân hủy theo 2 giai đoạn:

• Giai đoạn thứ nhất là quá trình mất nước của SnCl2.2H2O, quá trình này xảy ra trong nhiệt độ từ khoảng 400C đến 2000C, trong đó xuất hiện pic ở 158,370C với độ hụt khối là 18,93%.

• Giai đoạn thứ hai là quá trình phân hủy nhiệt hoàn toàn của SnCl2 : quá trình này xảy ra trong khoảng nhiệt độ từ 2000C đến 2800C với hao hụt khối lượng là 40.47%. Quá trình này chậm hẳn lại sau 3000C và kết thúc hoàn toàn ở gần 4000C. Furnace temperature /°C 50 150 250 350 450 550 TG/% -30 -20 -10 0 10 20 30 d TG/% /min -25 -20 -15 -10 -5 HeatFlow/µV -5 0 5 Mass variation: -2.88 % Mass variation: -14.61 % Mass variation: -14.48 % Peak :120.62 °C Peak :352.44 °C Peak :538.81 °C Peak 1 :99.54 °C Peak 2 :126.00 °C Figure: 19/05/2009 Mass (mg): 13.31

Crucible:PT 100 µl Atmosphere:Air

Experiment:H2PtCl6

Procedure:RT ----> 800C (10C.min-1) (Zone 2)

Labsys TG

Exo

Hình 16: Giản đồ phân tích nhiệt của H2PtCl6.6H2O

Theo giản đồ phân tích nhiệt của H2PtCl6.6H2O thì nhiệt độ phân hủy tạo Pt là ở lớn hơn 5000C. Nhưng theo một số tài liệu tham khảo [3, 11] thì quá trình phân hủy nhiệt của H2PtCl6.6H2O được mô tả bằng sơ đồ sau:

Từ sơ đồ trên ta nhận thấy rằng, quá trình phân hủy nhiệt của H2PtCl6.6H2O kết thúc ở nhiệt độ lớn hơn 400oC. Vì vậy, dựa vào kết quả phân tích nhiệt của SnCl2.2H2O và quá trình phân hủy nhiệt của H2PtCl6.2H2O, chúng tôi chọn nhiệt độ để điều chế lớp màng phủ là 400 ÷ 4500C. Ở nhiệt độ 400 ÷ 4500C có thể hình thành lớp màng mỏng có chứa các kim loại Pt, Sn trên nền Graphit xốp.

Nhiệt độ phân hủy tạo các màng trên nền Graphit xốp và kí hiệu như sau:

• SnO2/C: phân hủy nhiệt ở 4500C

• Pt/C: phân hủy nhiệt ở 4500C

• PtSn/C: phân hủy nhiệt ở 4500C

4.2.2. Chế tạo graphit xốp chứa Pt (Pt/C) và graphit xốp chứa Platin, thiếc (Pt, Sn/C)

Vật liệu graphit xốp sau khi xử lý được nhúng vào các dung dịch chất mang (Polymeric Precusor) đã pha chế, sau đó sấy khô mẫu ở 1400C trong 10 phút rồi đem mẫu đã sấy khô nung ở nhiệt độ 4500C trong 5 phút. Quá trình này nhúng-sấy-nung lặp lại 3 lần. Sau đó, mẫu tiếp tục đuợc nung ở 4500C trong 2h. Hình thái của các điện cực đã chế tạo được thể hiện trên các ảnh SEM. Kết quả thu được trên hình như sau:

Hình 17: Ảnh SEM của điện cực Pt/C

Hình 18: Ảnh SEM của điện cực PtSn/C

Một phần của tài liệu Nghiên cứu chế tạo vật liệu màng mỏng chứa Platin, Thiếc trên nền dẫn điện và hoạt tính điện hóa của chúng (Trang 25)

w