Khảo sát chiều hướng chuyển hóa n-hexan trên Al-SBA-16-0

Một phần của tài liệu Phân bố liều hấp thụ trong phantom theo bề dày và theo khoảng cách đến trục chùm photon năng lượng 6 và 15 MeV dùng trong xạ trị (Trang 63 - 67)

- Tổng hợp xúc tác Pt/SZSBA16 và Pt/AlSBA

Chương 3 KẾT QUẢ VÀ THẢO LUẬN 3.1 Vật liệu SBA-16 biến tính bằng SO42-/ZrO

3.3.2. Khảo sát chiều hướng chuyển hóa n-hexan trên Al-SBA-16-0

Chiều hướng chuyển hóa n-hexan trên Al-SBA-16-0.35 được chúng tôi nghiên cứu ở nhiệt độ 2000C. Kết quả cho thấy, tương tự như đối với SZ-SBA-16, sản phẩm chuyển hóa trên Al-SBA-16-0.35 ngay ở nhiệt khá thấp 2000C quá trình đehiđro hóa đóng vòng đã chiếm ưu thế hơn hẳn, sản phẩm vòng hóa chiếm đến 87%, sản phẩm quá trình đồng phân hóa chỉ chiếm 13%.

Nhiệt độ (0C) 200 Thành phần sản phẩm (%) isohexan: 13.0 metylxiclopentan: 58.2 xiclohexan: 28.8

Al-SBA-16-0.35 thể hiện có hoạt tính trong phản ứng chuyển hóa n-hexan, chứng tỏ đã cải thiện được hoạt tính xúc tác của vật liệu SBA-16 (không thể hiện hoạt tính xúc tác) bằng phương pháp kết hợp trực tiếp Al vào mạng cấu trúc silica.

Có thể thấy cả SZ-SBA-16 và Al-SBA-16-0.35 đều phù hợp với phản ứng thơm hóa hơn là phản ứng đồng phân hóa. Từ các kết quả này chúng tôi đã xác định hướng nghiên cứu tiếp theo cho hệ xúc tác Pt/SZ-SBA-16 và Pt/Al-SBA-16-0.35 là thực hiện phản ứng thơm hóa n-hexan.

3.3. Xúc tác Pt/SZ-SBA-16 và Pt/Al-SBA-16-0.35

Từ các kết quả thu được khi nghiên cứu đặc trưng của các vật liệu SBA-16 biến tính ở trên, chúng tôi nhận thấy, khi biến tính vật liệu mao quản trung bình SBA-16 bằng các oxit kim loại ZrO2 và Al2O3 đều thu được các vật liệu có cấu trúc đặc trưng của SBA-16 với độ trật tự khá cao. Trong đó, SZ-SBA-16 và Al-SBA-16- 0.35 là các mẫu có cấu trúc ít bị thay đổi so với SBA-16 thông thường và có diện

Bảng 3.4: Kết quả phân tích sản phẩm chuyển hóa n- hexan trên Al-SBA-16-0.35

tích bề mặt riêng lớn, thành mao quản dày, kích thước mao quản đồng đều, thích hợp làm vật liệu xúc tác. Nghiên cứu sơ bộ chiều hướng tạo thành sản phẩm của phản ứng chuyển hóa n-hexan trên SZ-SBA-16 và Al-SBA-16-0.35 cho thấy các vật liệu này thích hợp cho phản ứng dehiro hóa đóng vòng và thơm hóa. Vì vậy, chúng tôi đã mang Pt trên các vật liệu này, xác định một số đặc trưng vật lý và nghiên cứu hoạt tính của chúng trong phản ứng thơm hóa n-hexan.

3.3.1. Phổ EDX

Phổ EDX là phổ tán xạ năng lượng nguyên tử, cho phép xác định thành phần nguyên tố của mẫu. Chúng tôi tiến hành đo phổ EDX của Pt/SZ-SBA-16 và Pt/Al- SBA-16-0.35 nhằm khẳng định Pt đã được mang trên các vật liệu. Kết quả được biểu diễn trên hình 3.13.

Phổ EDX cho thấy sự có mặt của hai kim loại Pt và Zr trong mẫu xúc tác Pt/SZ-SBA-16 cũng như sự có mặt của Pt và Al trong Pt/Al-SBA-16-0.35. Thành phần của Pt trong Pt/SZ-SBA-16 và Pt/Al-SBA-16-0.35 lần lượt là 0.7% và 0.9%.

3.3.2. Phổ nhiễu xạ tia X

Sau khi tẩm Pt lên SZ-SBA-16 và Al-SBA-16-0.35 chúng tôi tiến hành đo phổ nhiễu xạ tia X góc hẹp để nghiên cứu sự thay đổi cấu trúc của vật liệu do ảnh hưởng của quá trình tẩm. Mau Pt/SZ-SBA-16 n (C ps ) 2000 3000 4000 d= 12 6. 47 7 Mau Pt/Al-SBA-16 Li n (C ps ) 3000 4000 5000 6000 d= 11 8. 70 7

Hình 3.13: Phổ EDX của Pt/SZ-SBA-16(a) và Pt/Al-SBA-16-0.35(b)

(b) (a)

Trên phổ nhiễu xạ tia X góc hẹp của mẫu Pt/SZ-SBA-16 (hình 3.14a), pic phụ thứ hai biến mất, chứng tỏ độ trật tự của vật liệu giảm. Thông số tế bào mạng là 17.89 nm, giảm so với mẫu SZ-SBA-16 (18.73 nm). Đối với Pt/Al-SBA-16-0.35 (hình 3.14b), phổ XRD góc nhỏ hầu như không thay đổi, thông số tế bào mạng là 16.8 nm, giảm không đáng kể so với Al-SBA-16-0.35 (17.2 nm).

Như vậy, sau khi tẩm Pt, vật liệu Al-SBA-16-0.35 giữ được cấu trúc trật tự và ít thay đổi hơn so với SZ-SBA-16. Điều này cũng được khẳng định bằng phương pháp TEM.

3.3.3. Phương pháp TEM

Nhằm xác định rõ ràng hơn sự thay đổi về kích thước, sự sắp xếp kênh mao quản của vật liệu sau khi tẩm Pt, chúng tôi đã sử dụng phương pháp chụp ảnh TEM. Kết quả được biểu diễn trên hình 3.15.

So sánh ảnh TEM của SZ-SBA-16 trước và sau khi tẩm Pt (hình 3.15a,b) có thể thấy sau khi mang Pt lên SZ-SBA-16, vật liệu vẫn giữ được cấu trúc MQTB nhưng hệ thống mao quản kém đồng đều hơn, kích thước mao quản nhỏ hơn. Các vùng tối cho thấy một phần mao quản của vật liệu đã bị che lấp, chứng tỏ Pt được phân tán không thực sự đồng đều trên vật liệu SZ-SBA-16.

Trên ảnh TEM của mẫu Pt/Al-SBA-16 (hình 3.15c) không hề xuất hiện các hạt Pt lớn nằm bên ngoài cũng như bên trong mao quản, hệ thống mao quản đồng đều

và trật tự hơn so với mẫu Pt/SZ-SBA-16. Điều này chứng tỏ Pt đã được phân tán rất đồng đều trong thành mao quản hoặc/và trên bề mặt của vật liệu.

Sự khác nhau về sự phân tán của Pt trên các vật liệu này có thể là do ảnh hưởng của diện tích bề mặt và bản chất của vật liệu. Theo một số tác giả [8], tương tác giữa kim loại và chất mang trong xúc tác chứa Pt đóng vai trò quan trọng trong sự phân tán của Pt. Có thể ở đây, Al-SBA-16 có tương tác tốt với Pt do hình thành phức ion của Pt2+ hoặc Pt4+ với chất mang [8], hơn nữa, Al-SBA-16-0.35 có diện tích bề mặt lớn gấp đôi so với SZ-SBA-16 nên Pt phân tán trên vật liệu này đồng đều hơn.

Hình 3.15: Ảnh TEM của SZ-SBA-16(a), Pt/SZ-SBA-16(b)và Pt/Al-SBA-16-0.35(c)

(a) (b)

Từ các kết quả đặc trưng vật lý của hai mẫu Pt/SZ-SBA-16 và Pt/Al-SBA-16- 0.35 chúng tôi nhận thấy vật liệu Al-SBA-16-0.35 có cấu trúc trật tự và ít bị thay đổi hơn SZ-SBA-16. Mặt khác, từ các kết quả nghiên cứu chiều hướng tạo thành sản phẩm trong phản ứng chuyển hóa n-hexan trên Al-SBA-16-0.35 cho thấy vật liệu này phù hợp với phản ứng thơm hóa. Do đó chúng tôi đã tiến hành nghiên cứu sâu hơn về phản ứng thơm hóa n-hexan trên Pt/Al-SBA-16-0.35.

Một phần của tài liệu Phân bố liều hấp thụ trong phantom theo bề dày và theo khoảng cách đến trục chùm photon năng lượng 6 và 15 MeV dùng trong xạ trị (Trang 63 - 67)