Thông tin và Truyền thông

Một phần của tài liệu luận văn thạc sỹ Công Nghệ hóa học (Trang 25)

1.1.5.2.1. Lưu trữ thông tin

Các hạt màu siêu mịn thường tạo ra chất lượng mực cao hơn về màu sắc, độ bao phủ, tính bền màu. Cũng như vậy, những “ bút nano” (các mũi kính hiển vi lực nguyên tử) có thể viết các bức thư cớ kích cỡ 5nm.

Trong thực tế, các hạt nano đã được ứng dụng audio, băng video và đĩa hiện đại, chúng phụ thuộc vào tính chất từ và quang học của các hạt mịn. Các tiến bộ không ngừng sẽ được tạo ra bằng kích thước ngày càng nhỏ hơn và bằng cách điều chỉnh độ kháng từ và hấp thụ quang học, vì vậy có thể tạo được nhiều môi trường hữu cơ lưu trữ dày đặc hơn [1, 12].

Các mạng hai chiều hoặc ba chiều của các hạt nano kim loại hoặc bán dẫn biểu hiện tính chất từ và quang đặc biệt. Các vật liệu này hứa hẹn rất nhiều ứng dụng trong ngành công nghiệp điện tử, bao gồm cả các máy tính quang học [1, 12].

1.1.5.3 Môi trường 1.1.5.3.1 Pin mặt trời

Hạt nano chất bán dẫn có các bandgap kích thước có thể điều chỉnh được, có nhiều tiềm năng cho các tế bào năng lượng mặt trời hiệu suất cao hơn (sản xuất điện) và tách nước (sản xuất hydro) [1, 12].

1.1.5.3.2 Xử lý ô nhiễm

Sự kích thích quang của các hạt chất bán dẫn tạo ra những cặp electron-lỗ trống, nó có ích cho cả hai quá trình oxy hóa và khử hóa các chất ô nhiễm, sử dụng trong xử lý ô nhiễm nước [12].

1.1.5.3.3. Làm sạch nước

Các bột kim loại tinh khiết hoạt động (Fe, Zn) có khả năng phản ứng cao với các Chlorocarbon trong môi trường nước. Các kết quả này đã dẫn đến việc thực hiện thành công màng chắn bột bột-cát kim loại xốp cho làm sạch nước ngầm [1, 12]. Trong khu vực xử lý nước thải, công nghệ nano cung cấp khả năng loại bỏ hiệu quả các chất ô nhiễm và vi trùng. Ngày nay các hạt nano, màng nano và bột nano được sử dụng để phát hiện và loại bỏ các hợp chất hóa học và các chất sinh học bao gồm các kim loại (ví dụ như cadmium, đồng, chì, thuỷ ngân, niken, kẽm), các chất dinh dưỡng (ví dụ như phosphate, ammonia, nitrat và nitrit), xianua, hữu cơ, tảo (ví dụ khuẩn độc tố xianua) vi rút, vi khuẩn, ký sinh trùng và kháng sinh. Vật liệu nano cho kết quả tốt hơn so với các kỹ thuật khác được sử dụng trong xử lý nước vì diện tích bề mặt cao (bề mặt / tỷ lệ thể tích). Nó có thể được sử dụng trong tương lai cho lọc nước ở quy mô lớn [13].

1.1.5.3.4. Chất hấp phụ phân ly

Các hạt nano của các oxit kim loại biểu hiện khả năng phản ứng bề mặt chọn lọc cao và diện tích bề mặt lớn. Do sự hấp phụ hóa học phân ly thường xảy ra, nên những vật liệu mới này được gắn cho cái tên “chất hấp phụ phân ly” và được sử dụng trong chiến tranh chống hóa học/sinh học, trong thanh lọc không khí, và thay thế cho phương pháp đốt các chất độc hại [12].

1.1.5.4. Hóa học

Các vi tinh thể kim loại kích thước nano có thể lớn lên bằng kết tủa điện phân nhanh nhờ vào tốc độ tạo nhân cao và vì vậy giảm sự lớn lên của vi tinh thể. Kim loại từ như sắt, sau đó có thể tạo nên chất rắn từ đậm đặc có tính chất từ mềm (độ kháng từ thấp và độ từ hóa bão hòa cao). Những vật liệu rất hữu hiệu cho các biến thế [1, 12]. 1.1.5.4.2. Cấu trúc nano và nanocomposite

Có một số tác động kỳ diệu sinh ra khi bột nano được cho vào chất nền polyme. Bột nano có thể ở dạng hạt mịn, cấu trúc giống hình kim hoặc platelet. Tác động này được tăng cường độ bền của hỗn hợp rất nhiều. Các vật liệu nhẹ hơn, bền hơn, lớp phủ chống mòn, vật liệu thay thế cho các chi tiết vật thể, chất dẻo chịu lửa, vật thay thế cho kim loại và có thể nhiều loại hơn nữa. [1, 12]

1.1.5.4.3. Xúc tác

Các phản ứng xúc tác thành công đã được triển khai trên 6 thập kỷ qua. HÌnh thành nhiều ngành công nghiệp trọng yếu đã đóng góp vào nền kinh tế ít nhất 20% GDP. Tầm quan trọng của vật liệu cấu trúc nano trong hóa học sự xúc tác không đồng nhất phụ thuộc vào các hạt nano kim loại. Các hạt nano có tỷ lệ giữa bề mặt- thể tích là lớn và do đó thường biểu hiện hoạt động bề mặt tăng so với vật liệu dạng khối, nó hoạt động như một chất xúc tác tốt. Tiềm năng ứng dụng các hạt nano trong các phạm vi xúc tác là từ tế bào nhiên liệu tới bộ chuyển đổi xúc tác và các thiết bị quang xúc tác. Các nghiên cứu về tác động của kích thước hạt và hình dạng đã từng và tiếp tục là lĩnh vực đầy lôi cuốn. [12].

1.1.5.4.4. Sơ tự lau sạch và có màu đẹp

Người ta đã chứng minh rằng khi sơn được thêm chất phụ gia bằng các hạt nano hấp thụ ánh sáng, ví dụ như TiO2, sơn sẽ tự lau sạch. Cơ chế này liên quan đến oy hóa quang chất gây bẩn bằng TiO2 trong nước. Vật liệu hữu cơ béo mà bám chặt trên sơn có thể bị oxy hóa bằng cặp lỗ - điện tử tạo thành khi hạt nano TiO2 hấp thụ ánh sáng mặt trời. Vì vậy, vật liệu hữu cơ được loại bỏ khỏi màng sơn.

1.2. Xúc tác nano

1.2.1. Giới thiệu

Công nghệ xúc tác đóng một vai trò quan trọng trong sản xuất, chuyển đổi năng lượng và bảo vệ môi trường. Ngày nay, chúng ta phải đối mặt với rất nhiều thách thức trong việc tạo ra nhiên liệu thay thế, làm sạch môi trường, đối đầu với những nguyên

nhân của sự nóng lên toàn cầu và bảo vệ chúng ta khỏi các chất độc hại và các tác nhân truyền nhiễm. Xúc tác là trung tâm để giải quyết những vấn đề này, nhưng sự phức tạp và nhu cầu đa dạng của các chất xúc tác đòi hỏi một cuộc cách mạng trong phương pháp tổng hợp và sử dụng. Cuộc cách mạng này có thể trở thành hiện thực khi chúng ta sử dụng những vật liệu mới và sử dụng những phương pháp mới áp dụng khoa học nano. Xúc tác nano là một trong những lĩnh vực thú vị đang thu hút nhiều chú ý trong khoa học nano. Mục tiêu chính của loại xúc tác này là kiểm soát phản ứng hóa học thông qua thay đổi kích thước, chiều, thành phần hóa học và hình thái của trung tâm phản ứng và bằng cách thay đổi động học sử dụng các trung tâm phản ứng ở dạng nano.

Hiện nay các hạt nano được sử dụng như chất xúc tác không đồng nhất có hiệu quả do có tỉ lệ giữa bề mặt và thể tích vô cùng lớn. Ngoài ra, các hạt nano còn có xu hướng được sử dụng như chất nền mạnh hữu hiệu. Khi sử dụng chất nền là vật liệu nano dẫn đến hoạt độ của xúc tác cao hơn khi sử dụng các chất nền thông thường như vật liệu xốp [14].

1.2.2. Các hạt nano làm xúc tác cho phản ứng hóa học.

Do những tính chất đặc biệt của hạt nano, xúc tác nano nhận được sự quan tâm nghiên cứu của rất nhiều nhà khoa học từ nhiều nước. Một vài ví dụ về hạt nano xúc tác cho phản ứng hóa học được minh họa dưới đây.

Hạt nano của kim loại chuyển tiếp có những ứng dụng rộng rãi trong xúc tác. Tuy nhiên, do diện tích bề mặt và năng lượng bề mặt của chúng lớn, kim loại chuyển tiếp có khuynh hướng tích tụ trong quá trình phản ứng và vì vậy những nghiên cứu gần đây tập trung vào chủ đề làm bền hóa hạt nano của kim loại chuyển tiếp. Một nghiên cứu vào năm 2008 của sử dụng polyethylene glycol (PEG) để làm bền hóa hạt xúc tác nano Pd dùng trong phản ứng Heck [15, 16]. Xúc tác nano Pd với sự phân bổ kích thước hẹp được tổng hợp từ poly(ethyleneglycol) (PEG) và Pd(OAc)2. PEG được sử dụng với mục đích để làm chất khử và bền hóa. Kết quả cho thấy, độ dài của PEG, PEG2000 thể hiện tính khử cao nhất. Đồng thời xúc tác Pd được bền hóa bởi PEG cho tính bền và tái xử dụng cao trong phản ứng Heck của iodobenzene và ethyl acrylate ở nhiệt độ 100°C. Bảng sau cho thấy xúc tác PEG-Pd được tái sử dụng trong phản ứng Heck cho độ chuyển hóa phản ứng giữa lần thứ 6 và lần đầu là gần bằng nhau, sau đó hoạt tính của xúc tác giảm xuống và đến lần thứ 9 thì độ chuyển hóa của phản ứng giảm xuống còn một nửa so với lần đầu (đồ thị 1.1).

Sơ đồ 1.1. Phản ứng của 4-iodo-anisole với ethyl acrylate sử dụng xúc tác Pd-PEG 2000

như xúc tác sử dụng Pd-PEG 2000

Một ứng dụng khác của xúc tác nano PEG-Pd là trong phản ứng hydro hóa. Kết quả nghiên cứu cho thấy xúc nano PEG-Pd với khối lượng phân tử PEG khác nhau (PEG800, PEG1000, và PEG2000) đều rất bền, thể hiện tính hoạt động và lựa chọn cao trong phản ứng hydro hóa của olefin dưới điều kiện nhẹ nhàng [17]. Tính chất tái sinh xúc tác của Pd- PEG2000 được kiểm tra và kết quả chỉ ra rằng hoạt tính của xúc tác vẫn giữ nguyên sau 10 lần tái sử dụng (đồ thị 1.1).

Sơ đồ 1.2. Phản ứng hydro hóa của cyclohexene sử dụng xúc tác Pd-PEG 2000 như xúc tác sử dụng Pd-PEG 2000

Hình 1.4. Độ chuyển hóa của thí nghiệm tái sinh sử dụng Pd-PEG 2000 như xúc tác trong phản ứng của 4-iodo-anisole với ethyl acrylate (trái) và Pd-PEG2000 trong phản ứng

hydro hóa của cyclohexene ở 70 °C (phải). 1.2.3. Hạt nano làm chất mang xúc tác

Tái sinh xúc tác trong công nghiệp hóa học và dược phẩm là một trong những chủ đề quan trọng về mặt kinh tề và môi trường; đặc biệt khi mà chất xúc tác có giá thành cao hoặc xúc tác chứa các kim loại độc hại. Cố định xúc tác trên một số chất mang như chất mang polymer, silica và đặc biệt là các loại vật liệu xốp có bề mặt riêng cao là hướng nghiên cứu đang được quan tâm. Các chất xúc tác được cố định trên chất mang

có ưu điểm là dễ tái sinh từ hỗn hợp phản ứng chỉ qua quá trình lọc đơn giản. Tuy nhiên, hiện tượng giảm dần hoạt tính và tính lựa chọn của xúc tác thường thấy ở chất xúc tác cố định trên chất mang.

Sự phát triển của công nghệ nano đã đem lại nhũng ứng dụng to lớn trong các lĩnh vực y học, môi trường và công nghiệp. Các vật liệu kích thước nano được tạo ra với những ưu điểm vượt trội về diện tích bề mặt so với các hạt có kích thước lớn. Vì vậy, các chất phản ứng dễ dàng tiếp cận các trung tâm hoạt động trên bề mặt các hạt nano cho nên có thể ngăn ngừa được nhiều nhược điểm của khi mà các hạt kích thước lớn được dùng làm chất mang (xúc tác dị thể). Với chất mang kích thước nano, xúc tác được phân bố nhiều trên bề mặt so với các hạt kích thước lớn thì xúc tác phân bố sâu trong các hốc của hạt và vì vậy làm cho các chất phản ứng khó tiếp cận được các trung tâm xúc tác.

Một trong những nghiên cứu cho thấy ống nano cacbon (CNT) được dùng làm chất mang cho xúc tác Pd cho hoạt tính cao và độ bền cao trong phản ứng hydro hóa của cyclooctene (Sơ đồ 1.3) [18]. Điều này được giải thích do sự tương tác đặc biệt giữa hạt nano Pd và ống nano cacbon mà có thể

Sơ đồ 1.3. Phương pháp phân bố xúc tác Pd trên chất mang ống nano

Trong một nghiên cứu khác xúc tác Pd được phân bố trên hạt sợi nano cacbon [19]. Tính hiệu quả của xúc tác này được thử nghiệm trong phản ứng Heck, kết quả cho thấy hoạt tính của xúc tác tăng nên khi kích thước của hạt xúc tác Pd giảm. Ngoài ra xúc tác Pd còn được cố định trên hạt nano alumina (nano-Al2O3(+)), hệ xúc tác này thể hiện tính xúc tác hiệu quả cho phản ứng ghép đôi của 2 phân tử 4-methylpyridine thông qua hoạt hóa liên kết C-H và C-C. Hoạt tính của hệ xúc tác nano cao hơn hẳn so với hệ xúc tác Pd/C thông thường và hiệu quả của phản ứng thì phụ thuộc vào sự lựa chọn của chất mang, phương pháp phân tán Pd và chất lượng của chất đầu và tác nhân phản ứng [20]. Một nghiên cứu của Tsai đã gắn phức của bipyridine–Pd lên bề mặt của hạt CMC-41 (đường kính lỗ khoảng 2.9 nm và diện tích bề mặt 888 m2 g−1) đã hoạt động như một xúc tác hiệu quả và có thể tái sinh được trong phản ứng Heck. Khả năng hoạt động của

xúc tác được thực hiện với phản ứng của aryl iodide và aryl bromide với acrylate và styrene với hiệu suất của phản ứng cao nhất là 98% và xúc tác giữ nguyên hoạt tính sau 4 lần sử dụng (độ chuyển hóa gần 100%) [21].

1.3. Xúc tác nano từ tính

1.3.1 Giới thiệu

Với một số tính chất thuận lợi như tỷ lệ cao giữa diện tích bề mặt với thể tích, khả năng thay đổi bề mặt, ổn định nhiệt cao và khả năng dễ dàng phân tán và thu hồi từ dung dịch [22], các hướng nghiên cứu gần đây đang quan tâm nhiều đến hướng sử dụng các hạt nano siêu thuận từ làm chất hỗ trợ hiệu quả cho vật liệu trong . Chất xúc tác được hỗ trợ bởi các hạt nano từ tính có thể nhanh chóng, dễ dàng phục hồi và tái sử dụng khi có sự hiện diện của từ trường bên ngoài mà giảm không đáng kể hoạt tính.

Ngoài ra, bề mặt của các hạt nano từ tính có thể được chức hóa (functionalized) để tạo nhiều loại chất xúc tác hữu cơ và hữu cơ kim loại. Các loại kim loại chuyển tiếp ghép lên các hạt nano từ tính xúc tác phản ứng đang đươch nghiên cứu nhiều trong thời gian gần đây, nó xúc tác cho nhiều loại phản ứng khác nhau như phản ứng ghép mạch carbon-carbon, hydro formyl hóa và phản ứng polymer hóa...

1.3.2. Cơ sở của hạt nano từ tính

Siêu thuận từ (Superparamagnetism) là một hiện tượng, một trạng thái từ tính xảy ra ở các vật liệu từ, mà ở đó chất biểu hiện các tính chất giống như các chất thuận từ, ngay ở dưới nhiệt độ Curie hay nhiệt độ Neél. Đây là một hiệu ứng kích thước, về mặt bản chất là sự thắng thế của năng lượng nhiệt so với năng lượng định hướng khi kích thước của hạt quá nhỏ.

Hiện tượng (hay trạng thái) siêu thuận từ xảy ra đối với các chất sắt từ có cấu tạo bởi các hạt tinh thể nhỏ. Khi kích thước hạt lớn, hệ sẽ ở trạng thái đa đômen (tức là mỗi hạt sẽ cấu tạo bởi nhiều đômen từ). Khi kích thước hạt giảm dần, chất sẽ chuyển sang trạng thái đơn đômen, có nghĩa là mỗi hạt sẽ là một đômen. Khi kích thước hạt giảm quá nhỏ, năng lượng định hướng (mà chi phối chủ yếu ở đây là năng lượng dị hướng từ tinh thể) nhỏ hơn nhiều so với năng lượng nhiệt, khi đó năng lượng nhiệt sẽ phá vỡ sự định hướng song song của các mômen từ, và khi đó mômen từ của hệ hạt sẽ định hướng hỗn loạn như trong chất thuận từ.

Hình 1.5. Ảnh hưởng của từ trường lên mômen từ

Từ cảm của vật liệu là một đại lượng đặc trưng cho sự cảm ứng của vật liệu dưới tác động của từ trường ngoài. Người ta dựa vào đại lượng này để phân chia các vật liệu thành 5 loại như sau:

• Nghịch từ: là vật liệu có χ nhỏ hơn không (âm) và có giá trị tuyệt đối rất nhỏ, chỉ cỡ khoảng 10- 5.

• Thuận từ: là vật liệu có χ lớn hơn không (dương) và có giá trị tuyệt đối nhỏ cỡ 10- 3.

• Sắt từ: là vật liệu có χ dương và rất lớn, có thể đạt đến 10 5.

• Feri từ: là vật liệu có χ dương và lớn (tuy nhỏ hơn sắt từ).

• Phản sắt từ: là vật liệu có χ dương nhưng rất nhỏ.

Như đã thảo luận ở phần trước, vật liệu nano trong xúc tác giữ những ưu thế về hoạt tính và khả năng tái sinh cao, nhưng vẫn tồn tại một số nhược điểm vì: thông thường các hạt nano thường tồn tại dưới dạng hạt keo cho nên rất dễ phân tán trong

Một phần của tài liệu luận văn thạc sỹ Công Nghệ hóa học (Trang 25)

Tải bản đầy đủ (DOC)

(95 trang)
w