Ảnh hưởng của độ chênh lệch năng lượng đáy vùng dẫn (∆ EC) tại mặt tiếp xúc giữa các lớp

Một phần của tài liệu PHÂN TÍCH CHƯƠNG TRÌNH MÔ PHỎNG MỘTCHIỀU AMPS – 1D (Analysis of Microelectronic and Photonic Structures) (Trang 43 - 46)

2 CHƯƠNG

4.2 Ảnh hưởng của độ chênh lệch năng lượng đáy vùng dẫn (∆ EC) tại mặt tiếp xúc giữa các lớp

tại mặt tiếp xúc giữa các lớp

Như đã xét độ chênh lệch năng lượng đáy vùng dẫn phụ thuộc vào ái lực hoá học. Đối với pin mặt trời thế hệ mới với lớp hấp thụ CIGS, ta xét về ảnh hưởng của phân bố vùng năng lượng tại mặt tiếp xúc CdS/CIGS. Qua một số tài liệu ta thấy rằng, độ chênh lệch năng lượng đáy vùng dẫn tại mặt tiếp xúc CdS/CIGS là dương khi sự tái hợp bề mặt tiếp xúc giữa hai lớp này là cao và là âm khi sự tái hợp bề mặt của hai lớp tiếp xúc là thấp.

Sự phụ thuộc của các đặc trưng đầu ra vào sự thay đổi ∆EC thể hiện qua bảng giá trị và các hình biểu diễn dưới đây.

Bảng 5:Giá trị của các đặc trưng đầu ra của chương trình mô phỏng một chiều AMPS – 1D khi thay đổi năng lượng đáy vùng dẫn tại mặt tiếp xúc

ΔΕC (1) Hiệu suất (η) (2) Hệ số lấp đầy (ff) (3) Thế hở mạch (VOC ) (4) Mật độ dòng đoản mạch (JSC) (5) - 0,6 9,15 56 1,5 10 - 0,5 12 56,5 1,4 13 - 0,4 13,9 57 1,3 16 - 0,3 15 57,5 1,2 19,5 - 0,2 16,01 58 1,1 22,5 - 0,1 16,58 58,6 1,01 26 0,0 17,05 59 0,92 29 (1) (2) (3) (4) (5) 0,1 17,36 59 0,81 32 0,2 17,34 59,04 0,7 35

0,3 17,59 59,06 0,62 37

0,4 16,07 59 0,51 39

0,5 12 58 0,41 42

0,6 4 57 0,3 5

Từ đồ thị và bảng giá trị ta thấy rằng: Khi thay đổi ái lực hoá học của lớp hấp thụ CIGS thì cũng như thay đổi giá trị của ∆EC. Các đặc trưng đầu ra về hiệu năng hoạt động của một pin mặt trời thế hệ mới với lớp hấp thụ CIGS thu được từ chương trình mô phỏng cũng thay đổi. Cụ thể là :

Hình 16:Sự phụ thuộc của hiệu suất vào ∆ΕC

Hiệu suất chuyển đổi năng lượng tăng dần sau đó xuất hiện một cực đại tại giá trị ΔEC = 0,3 eV với hiệu suất là 17,59 %, sau đó giảm dần xuống giá trị 4 %.

Hình 17: Sự phụ thuộc của mật độ dòng đoản mạch JSC vào ∆ΕC

Cũng tương tự như vậy, mật độ dòng đoản mạch tăng dần và cũng có một cực đại tại ΔEC = 0,5 eV với mật độ dòng đoản mạch 42 mA/cm 2, sau đó thì mật độ dòng đoản mạch sẽ giảm đột ngột xuống giá trị 5 mA/cm 2.

Hình 18:Sự phụ thuôc của hệ số lấp đầy ff vào ∆ΕC

Hệ số lấp đầy cũng xuất hiện một cực đại tại ΔEC = 0, 3 eV với hệ số lấp đầy là 59 và sau đó cũng giảm xuống 57. Nhìn chung, hệ số lấp đầy có thay đổi nhưng không đáng kể.

Hình 19:Sự phụ thuộc của thế hở mạch VOC vào ∆ΕC

Thể hở mạch thì giảm nhanh từ giá trị 1,5 V xuống 0,3 V.Như vậy, sự thay đổi năng lượng đáy vùng dẫn ảnh hưởng trực tiếp đến thê hở mạch.

Trong thực tế, tuỳ vào nhu cầu và mục đích chọn đặc trưng đầu ra của thiết bị mà ta chọn giá trị ΔEC. Nếu xét chung nhất, đặc biệt là ta quan tâm đến đặc trưng về hiệu năng hoạt động thì ta thấy giá trị ΔEC = 0,3 eV là phù hợp nhất. Vì sau giá trị này, mật độ dòng vẫn tăng, mà thế hở mạch chưa giảm nhiều và hệ số lấp đầy, hiệu suất chuyển đổi đều đạt giá trị cực đại. Thế hở mạch giảm nhanh là do ΔEC > 0,3 eV thì quá trình tái hợp xảy ra nhanh hơn quá trình phát sinh cặp điện tử - lỗ trống làm cho hệ số lấp đầy giảm dần. Mặc dù mật độ dòng đoản mạch tăng nhưng đó là tăng dòng tái hợp. Việc chọn ΔEC = 0,3 eV là phù hợp nhất.

Để thay đổi được các giá trị của ΔEC, theo các tài liệu ta thấy rằng các nhà khoa học thường chế tạo thêm các lớp đệm phụ để làm giảm quá trình tái hợp tại mặt tiếp xúc giữa các lớp.

Một phần của tài liệu PHÂN TÍCH CHƯƠNG TRÌNH MÔ PHỎNG MỘTCHIỀU AMPS – 1D (Analysis of Microelectronic and Photonic Structures) (Trang 43 - 46)

Tải bản đầy đủ (DOC)

(55 trang)
w