Chương 2 THỰ C NGHI Ệ M
2.2.2. Phương pháp ghi bức xạ dùng hệ phổ kế gamma phơng thấp bằng detector bán dẫn
siêu tinh khiết HPGe. Ưu điểm chính của phương pháp này là cĩ thể dễ dàng xác định chính xác năng lượng và cường độ của bức xạ gamma; hiệu ứng tự hấp thụ bức xạ gamma ở trong mẫu cĩ thể bỏ qua hoặc hiệu chỉnh một cách đơn giản và chính xác. Trong điều kiện phịng thí nghiệm và mức hàm lượng nguyên tố trong mẫu cỡ g/g, phương pháp phổ kế gamma phơng thấp được sử dụng để phân tích các đồng vị phĩng xạ tự nhiên và nhân tạo trong các mẫu vật liệu xây dựng vẫn cĩ thể đáp
ứng được nhiều yêu cầu địi hỏi trong nghiên cứu. Vì lí do này, tơi chọn phương
pháp đo phổ gamma để ghi bức xạ bằng detector bán dẫn.
2.2.2. Phương pháp ghi bức xạ dùng hệ phổ kế gamma phơng thấp bằng detector bán dẫn detector bán dẫn
2.2.2.1. Cơ sở vật lý của phương pháp
Phương pháp đo hàm lượng các nhân phĩng xạ bằng hệ phổ kế gamma phơng thấp dựa trên cơ sở lý thuyết về tương tác của tia gamma với vật chất.
Bức xạ hạt nhân bao gồm các loại hạt mang điện như tia alpha, beta hay các bức xạ điện từ như tia gamma, tia X cĩ cường độ và năng lượng xác định. Quá trình phân rã alpha và beta thường kèm theo phân rã gamma vì sau khi phân rã alpha và beta, hạt nhân phĩng xạ mẹ biến thành hạt nhân con thường nằm ở trạng thái kích thích. Khi hạt nhân con chuyển từ trạng thái kích thích về trạng thái cơ bản nĩ cĩ thể phát ra một số tia gamma. Tia gamma là một dạng của sĩng điện từ song cĩ tần số hay năng lượng rất lớn. Khi phân rã gamma, hạt nhân A
ZX khơng thay đổi các giá trị Z và A.
Khi bức xạ đi vào mơi trường vật chất bên trong của một detector ghi bức xạ, các tương tác vật lý xuất hiện. Do tia gamma là sĩng điện từ nên nĩ tham gia tương tác yếu nghĩa là trên những điện tử của nguyên tử và trường Coulomb của hạt nhân. Do đĩ, tương tác của tia gamma với vật chất khơng gây hiện tượng ion hĩa trực tiếp như hạt tích điện mà nĩ làm bứt electron quỹ đạo ra khỏi nguyên tử hay sinh ra các cặp electron – positron. Các electron này gây ion hĩa và đĩ là cơ chế cơ
bản mà hạt gamma năng lượng cao cĩ thể ghi đo và nhờ đĩ chúng cĩ thể gây nên hiệu ứng sinh học phĩng xạ. Cĩ 3 dạng tương tác của gamma với nguyên tử đĩ là hiệu ứng quang điện, tán xạ Compton và hiệu ứng tạo cặp.
Khi bức xạ đi vào mơi trường vật chất bên trong của một detector ghi bức xạ nĩ sinh ra một tín hiệu điện. Đây là cơ sở vật lý của việc ghi nhận bức xạ. Tín hiệu ban đầu rất bé, sau một loạt các quá trình biến đổi và khuyếch đại trong các thiết bị điện tử, tín hiệu thu được cĩ thể hiện trên màn hình dạng xung (số đếm). Các máy phân tích phĩng xạ đều sử dụng nguyên lý này để ghi phĩng xạ. Hệ phổ kế gamma là thiết bị ghi nhận và phân tích phĩng xạ hiện đại nhất.
2.2.2.2. Các đặc trưng của hệ phổ kế gamma
Độ phân giải năng lượng (energy resolution)
Độ phân giải năng lượng của detector là tỷ số của FWHM và vị trí đỉnh Ho.
Trong đĩ: FWHM (full width half maximum) là bề rộng ở một nửa giá trị cực đại được định nghĩa là bề rộng của phân bố tại tọa độ bằng một nửa độ cao cực đại của đỉnh với điều kiện tất cả phơng nền đã được loại bỏ.
Độ phân giải năng lượng là đại lượng khơng cĩ thứ nguyên và được diễn tả theo %.
Detector cĩ độ phân giải năng lượng càng nhỏ thì càng cĩ khả năng phân biệt tốt giữa hai bức xạ cĩ năng lượng gần nhau. Trong sự phân bố chiều cao xung vi phân được tạo ra bởi detector, detector cĩ độ phân giải tốt sẽ cho ra phổ cĩ bề rộng của đường cong phân bố nhỏ, đỉnh phổ nhơ cao lên, nhọn và sắc nét.
Độ phân giải năng lượng của detector với bề rộng ở một nửa giá trị cực đại của đỉnh 1,33 MeV của 60Co cĩ giá trị trong khoảng 18 keV–22 keV.
dH dN H H0 y/2 y FWHM Độ phân giải năng lượng FWHM H0 R = Hình 2.1. Định nghĩa của độ phân giải của detector. Đối với những đỉnh cĩ dạng Gauss, độ lệch tiêu chuẩn thì FWHM là 2,35 .
Hình 2.2. Hàm đáp ứng đối với những detector cĩ độ phân giải tương đối tốt và độ phân giải tương đối xấu.
Hiệu suất ghi (detection efficiency)
Về nguyên tắc, tất cả detector sẽ cho xung ra khi cĩ bức xạ tương tác với đầu dị. Đối với các bức xạ khơng mang điện như gamma hoặc neutron thì khi đi vào detector chúng phải qua nhiều quá trình tương tác thứ cấp trước khi cĩ thể được ghi nhận vì những bức xạ này cĩ thể truyền qua khoảng cách lớn giữa hai lần tương tác và như thế chúng cĩ thể thốt ra ngồi vùng làm việc của detector. Vì vậy hiệu
suất của detector là nhỏ hơn 100%. Lúc này, hiệu suất của detector rất cần thiết để liên hệ số xung đếm được với số photon hoặc neutron tới detector. Hiệu suất đếm của detector được chia làm hai loại: hiệu suất tuyệt đối (absolute effect) và hiệu suất nội (intrinsic effect). Hiệu suất thường dùng cho detector bức xạ gamma là hiệu suất đỉnh nội (intrinsic peak efficiency).
Trong đĩ, hiệu suất nội được định nghĩa:
(1)
Hiệu suất nội khơng phụ thuộc vào yếu tố hình học giữa detector với nguồn mà chỉ phụ thuộc vào vật liệu detector, năng lượng bức xạ tới và bề dày vật lý của detector theo chiều bức xạ tới. Sự phụ thuộc nhỏ vào khoảng cách giữa nguồn và detector vẫn cịn vì quãng đường trung bình của bức xạ xuyên qua detector sẽ thay đổi một ít theo khoảng cách này.
Hiệu suất đếm cũng được phân loại theo bản chất của bức xạ được ghi nhận. Nếu chúng ta ghi nhận tất cả xung từ detector, khi đĩ cần sử dụng hiệu suất tổng (total efficiency). Trong trường hợp này tất cả các tương tác dù cĩ năng lượng thấp cũng giả sử được ghi nhận, sự phân bố chiều cao xung vi phân được giả thiết trình bày trong hình 2.3., trong đĩ diện tích tồn phần dưới đỉnh phổ là tổng tất cả các xung khơng để ý đến biên độ được ghi nhận. Trong thực tế, bất kỳ hệ đo nào cũng địi hỏi các xung được ghi nhận phải lớn hơn một mức ngưỡng xác định nào đĩ được đặt ra nhằm loại các nhiễu do thiết bị tạo ra. Như thế, chúng ta chỉ cĩ thể tiến tới thu được hiệu suất tồn phần lý tưởng bởi việc đặt mức ngưỡng này càng thấp càng tốt. Hiệu suất đỉnh (peak efficiency) được giả sử chỉ cĩ những tương tác mà làm mất hết tồn bộ năng lượng của bức xạ tới được ghi. Trong phân bố độ cao xung vi phân, những bức xạ mang năng lượng tồn phần này được thể hiện bởi đỉnh mà xuất hiện ở phần cuối cao nhất của phổ. Những bức xạ chỉ mang một phần năng lượng của bức xạ tới khi đĩ sẽ xuất hiện ở phía xa bên trái trong phổ. Số bức xạ cĩ năng lượng tổng cĩ thể thu được bằng tích phân diện tích dưới đỉnh (phần gạch
chéo trong hình). Hiệu suất tồn phần và hiệu suất đỉnh được liên hệ bởi tỉ số “đỉnh- tổng” (peak to total) r. peak total r (2) dH dN H Đỉnh năng lượng đầy đủ
Hình 2.3. Đỉnh năng lượng tồn phần trong phổđộ cao xung vi phân.
Hiệu suất detector germanium là tỷ số diện tích đỉnh 1332 keV (60Co) của detector germanium với diện tích đỉnh đĩ khi đo bằng detector nhấp nháy NaI (Tl) hình trụ, kích thước 7.62 cm x 7.62 cm, cả hai detector đặt cách nguồn 25 cm. Detector gemanium cĩ hiệu suất trong khoảng 10% đến 100%.
Tỷ số đỉnh/compton
Theo tài liệu của IAEA (Tecdoc 564) [32], việc tính tỷ số đỉnh/compton thực hiện đối với đỉnh 1332 keV (60Co), phần compton lấy trong miền năng lượng từ 1040 keV đến 1096 keV.
Thực nghiệm: Phổ gamma của 60Co được đo trong 5 phút, thời gian chết 1%. Số đếm tại đỉnh 1332 keV bằng 2527. Tổng số đếm từ 1040 keV đến 1096 keV bằng 15106, do đĩ số đếm trung bình trên một kênh là 53,7 và tỷ số đỉnh/Compton = 2527/53,7 = 47/1.
Giới hạn phát hiện dưới LD và giới hạn dị AD
Bảng 2.3. Giới hạn phát hiện của phổ kế gamma.
Đồng vị E (KeV) Giới hạn phát hiện(Bq)
210Pb 46,6 0,01305 238U 63,3 0,03485 238U 1001 0,16217 232Th 238 0,00155 232Th 583 0,00054 226Ra 186 0,04222 226Ra 295 0,00065 226Ra 352 0,00265 226Ra 609 0,00091 134Cs 795 0,00512 137Cs 661 0,03512 226Ra 1461 0,02874
Giới hạn phát hiện dưới LD : LD 2,71 4,65 B (3) Giới hạn phát hiện AD L C D* / * * p T Bq( ) (4) Trong đĩ:
B
là sai số tại phơng của đỉnh quan tâm.
T
là thời gian đo.
là hiệu suất ghi của phổ kế tại đỉnh quan tâm. p là cường độ chùm tia gamma quan tâm.
* * / (1 T)
C T e là diện tích đỉnh. (5) Đối với phổ kế gamma của trung tâm hạt nhân TP HCM, các giá trị giới hạn phát hiện đối với một số đồng vị phĩng xạ được cho trong bảng 2.1. Buồng chì cĩ khả năng đo được các tia gamma mềm như 46.6 keV của 210Pb và 63.3 keV của
234Th.