Kết quả phân tích dạng Asen vô cơ, dạng Asen hữu cơ trong một số

Một phần của tài liệu 299715 (Trang 70 - 83)

số mẫu hải sản

Áp dụng quy trình phân tích trên vào phân tích các mẫu hải sản bao gồm: tôm sú, cá ngừ, cá thu, cá khoai, cá ngân, vẹm xanh, sao biển, ngao. Kết quả phân tích Asen vô cơ của các mẫu hải sản đƣợc đƣa ra trên bảng 3.11.

Bảng 3.11. Kết quả phân tích Asen vô cơ

Tên mẫu Hàm lƣợng Asen vô cơ (g/g) (XSX ) (n=3) Hàm lƣợng Asen tổng số(g/g) (XSX ) (n=3) % Vẹm xanh 0,110 0,046 11,720,068 0,938 Sao biển 0,086 0,024 10,480,034 0,820 Cá ngân 0,020 0,074 9,170,041 0,218 Cá thu 0,262 0,031 7,210,032 3,633 Cá ngừ 0,104 0,051 5,410,041 1,922 Cá khoai 0,270  0.087 8,430,035 3,202 Ngao 0,020  0,085 15,360,029 0,130 Tôm sú 0,197 0,012 7,470,049 2,637

Từ kết quả phân tích hàm lƣợng Asen vô cơ trên bảng 3.10 cho thấy lƣợng Asen vô cơ trong các mẫu hải sản là rất nhỏ, cao nhất cá khoai cũng chỉ là 0,27g/l.

Từ kết quả phân tích dạng Asen vô cơ, chúng tôi tính đƣợc hàm lƣợng dạng Asen hữu cơ trong các mẫu hải sản trên. Kết quả tính toán đƣợc chỉ ra trên bảng 3.12.

Bảng 3.12. Kết quả phân tích dạng Asen hữu cơ

Kí hiệu mẫu Hàm lƣợng Asen hữu cơ (g/g) (XSX ) (n=3) Hàm lƣợng Asen tổng số (g/g) (XSX) (n=3) % Vẹm xanh 11,61  0,052 11,720,068 99,06 Sao biển 10,394 0,077 10,480,034 99,17 cá ngân 9,15 0,024 9,170,041 99,78 Cá thu 6, 948 0,062 7,210,032 96,36 Cá khoai 8,16 0,009 8,430,035 96,79 Ngao 15,34 0,012 15,360,029 99,86 Tôm sú 7,273 0,087 7,470,049 97,36 Cá ngừ 5,306 0,007 5,410,041 98,07

Qua kết quả phân tích thu đƣợc trên bảng 3.12. cho thấy hàm lƣợng dạng Asen hữu cơ chiếm chủ yếu trong các hải sản đã phân tích. Theo một số tài liệu nhƣ của Langston W.J(1980) và của LieuJ, D.H. O'Brien và K.J. Irgolie(1996)... thì các dạng hữu cơ chủ yếu này là Asennobetan, Asennocholin và Đimetyl Asenic, là những dạng hữu cơ ít độc cho con ngƣời, nhất là Asennobetan- chất này dễ dàng đƣợc đào thải ra ngoải cơ thể.

Tôm, ngao, cá... là những thức ăn phổ biến cho con ngƣời và cho các động vật khác trong chuỗi dinh dƣỡng. Vì thế, việc xác định đƣợc Asen trong hải sản là một khâu chủ yếu để qua đó đánh giá chất lƣợng hải sản vì trong hải sản có khả năng tích lũy kim loại nặng cao mà Asen là kim loại chiếm phần lớn. Hàm lƣợng Asen nằm trong các mẫu hải sản đã phân tích nằm trong khoảng từ 5,41 đến 15,36(g/g) (bảng 2.8). Mức độ Asen tìm thấy trong luận văn nằm trong phạm vi đã đƣợc trình bày trƣớc đó cho các dạng Asen trong một số hải sản [14,15]. Phần tỉ lệ dạng Asen hữu cơ trong các mẫu nghiên cứu của luận văn đã giải quyết một phần về yếu tố độc tính của Asen trong hải sản. Có thể bƣớc đầu kết luận, các mẫu hải sản trên là an toàn với sức khỏe con ngƣời.

Trên đây là các thí nghiệm phân tích đã đƣợc thực hiện trong suốt quá trình nghiên cứu và các kết quả thu đƣợc sau khi làm các thí nghiệm phân tích tổng số, tổng dạng Asen trong một số hải sản bằng phƣơng pháp trắc quang.

Toàn bộ quy trình đƣợc tóm tắt bằng sơ đồ sau:

Hình 3.9: Quy trình xác định tổng số, tổng dạng Asen trong một số hải sản bằng phương pháp trắc quang Mẫu hải sản Rửa sạch Đông khô Nghiền nhỏ Mẫu hải sản dạng bột HNO3-HClO4-H2SO4 (1:1:5) Đun ở 2500 C trong 30 phút Định mức đến 50ml. 1ml KI 10%, 10ml HCl 15% + 4g Zn, 4ml bạc Đietylđithiocacbamat Đo quang. Định mức đến 50ml. 1ml KI 10%, 10ml HCl 15% + 4g Zn, 4ml Bạc Đietylđithiocacbamat Đo quang

Asen tổng số Dạng Asen vô cơ

Dạng Asen hữu cơ Mẫu đã vô cơ hóa

(dạng dung dịch)

Mẫu chiết (dạng dung dịch) MeOH-H2O(1:1)

Rung siêu âm Lắc li tâm Chiết lấy phần dung dịch

KẾT LUẬN

Với đề tài Nghiên cứu, xác định tổng số, tổng dạng Asen trong một số hải sản bằng phƣơng pháp trắc quang, sau một thời gian nghiên cứu, luận văn đã đạt đƣợc những kết quả sau:

1. Đã khảo sát, nghiên cứu các điều kiện có ảnh hƣởng đến độ hấp thụ quang của phức màu của Asen nhƣ: Bƣớc sóng tối ƣu, pH tối ƣu, thời gian tạo phức, tỉ lệ thuốc thử.... Xây dựng đƣợc đƣờng chuẩn để xác định Asen bằng phƣơng pháp trắc quang. Từ đó, phân tích đƣợc hàm lƣợng Asen trong một số hải sản một cách chính xác, ổn định.

- Qua khảo sát cho thấy, độ hấp thụ quang của phức màu tốt nhất tại bƣớc sóng 520nm, pH để tạo phức tốt nhất bằng 1, với thời gian tạo phức là 20 phút, thể tích thuốc thử: 4ml và thể tích mẫu là 50ml, lƣợng chất khử Zn là 4gam.

2. Đã khảo sát nghiên cứu và đƣa ra qui trình xác định hàm lƣợng Asen tổng số trong một số hải sản bằng phƣơng pháp trắc quang. Độ sai lệch lớn nhất của phƣơng pháp khi phân tích so sánh với mẫu chuẩn quốc tế không vƣợt quá 3% so với giá trị chứng chỉ. Giới hạn phát hiện của phƣơng pháp đạt 0,5 g/l.

Mẫu hải sản đƣợc vô cơ hóa sau khi đông khô chân không ở nhiệt độ 250oC trong hỗn hợp axit HNO3, HClO4, và H2SO4 với tỉ lệ 1:1:5.

3. Xây dựng đƣợc qui trình xác định chính xác và tin cậy hàm lƣợng dạng Asen hữu cơ và dạng Asen vô cơ trong một số mẫu hải sản với việc chiết tách, làm giàu đạt hiệu suất thu hồi 98% với ba lần chiết khi sử dụng hệ MeOH : H2O (1:1) sau khi rung siêu âm và lắc li tâm. Dung dịch sau khi chiết tách đƣợc tạo phức và đo quang để xác định đƣợc hàm lƣợng dạng Asen vô cơ. Hàm lƣợng dạng Asen hữu cơ là hiệu của hàm lƣợng Asen tổng số và

dạng Asen vô cơ đã xác định đƣợc. Sai số của phƣơng pháp khi phân tích với mẫu chuẩn cá quốc tế nhỏ hơn 3%.

4. Từ qui trình phân tích xây dựng đƣợc, chúng tôi đã tiến hành phân tích xác định hàm lƣợng tổng số, dạng Asen hữu cơ và dạng Asen vô cơ trong một số mẫu hải sản, với độ lệch chuẩn của ba lần thí nghiệm mỗi loại là có thể chấp nhận đƣợc.

Từ những kết quả thu đƣợc sau khi làm thực nghiệm, bƣớc đâù có thể

kết luận các mẫu hải sản đã phân tích là an toàn đối với sức khỏe con ngƣời.

TÀI LIỆU THAM KHẢO`

Tài liệu tiếng Việt:

1. Đỗ Văn Ái, Mai Trọng Nhuận, Nguyễn Khắc Vinh (2000),  Một số đặc điểm phân bố Asen trong tự nhiên và vấn đề ô nhiễm Asen trong môi trường ở Việt Nam, Hội thảo quốc tế về ô nhiễm Asen.

2. Đặng Văn Can, Đào Ngọc Phong (2000), Đánh giá tác động của Asen tới môi sinh và sức khỏe con người ở các vùng mỏ nhiệt dịch có hàm lượng Asen cao. Tập san địa chất và khoáng sản. Tập 7, trang 199.

3. Hội thảo quốc tế (2000),  Ô nhiễm Asen: Hiện trạng, tác động đến sức khỏe con người và các giải pháp phòng ngừa, Hà Nội, 12/2000.

4. Hồ Viết Quí, Các phương pháp phân tích quang học trong hóa học, Nhà xuất bản Đại học Quốc gia Hà Nội 1999.

5. Hồ Viết Quí, Các phương pháp phân tích công cụ trong hóa học hiện đại , Nhà xuất bản Đại học sƣ phạm Hà Nội 2007.

6. Hoàng Nhâm, Hóa học vô cơ, tập 2, Nhà xuất bản Giáo Dục 2000.

7. Lâm Ngọc Trâm, Các hợp chất tự nhiên trong sinh vật biển Việt Nam, Nhà xuất bản Khoa học kỹ thuật 1999.

8. Tiêu chuẩn Việt Nam (1996), Xác định asen tổng - Phương pháp quang phổ dùng bạc dietyldithiocacbamat, TCVN 6182:1996-Hà Nội (1996). 9. Tiêu chuẩn Việt Nam (2000), Xác định Asen tổng- Phương pháp đo phổ

hấp thụ nguyên tử (kỹ thuật hydrua hóa), TCVN 6626:2000-Hà Nội (2000).

10. Trần Tứ Hiếu, Phương pháp phân tích quang phổ vùng UV-VIS, Đại học Quốc Gia Hà Nội.

11. Trần Thắm, Nghiên cứu qui trình định lượng Asen trong động vật đáy

bằng phương pháp Von-Ampe hòa tan catot , Luận văn thạc sĩ khoa học- 2000 Viện hóa học, Viện khoa học và công nghệ Việt Nam.

12. Trịnh Bích Hà, Nghiên cứu, phân tích, Đánh giá mức độ ô nhiễm Asen

trong nguồn nước sinh hoạt tại khu vực quận Hoàng Mai - Hà Nội, Luận văn thạc sĩ khoa học- 2008, Đại học Sƣ phạm Hà Nội.

13. Nguyễn Đình Thuất, Nghiên cứu phân tích liên tục (on-line) dạng Asen

trong một số đối tượng môi trường biển bằng phương pháp liên hợp sắc ký lỏng và hấp thụ nguyên tử Luận án tiến sĩ hóa học- 2008, Viện hóa học, Viện khoa học và công nghệ Việt Nam.

14. Vũ Đức Lợi, Nghiên cứu xác định một số dạng thủy ngân trong các mẫu

sinh học và môi trường, Luận án tiến sĩ hóa học- 2008, Viện hóa học, Viện khoa học và công nghệ Việt Nam. 66-76.

Tài liệu tiếng Anh:

15. Apha, Awwa, WEF(1998) standar Methods forthe Examination of waste water 20th Edition 3500-AsB, 360-361. Editedby Lenores. Clesceri Arnolde.

16. Andreae M.O.,(1978), Distribution and speciation of asenrnic in natural water and some marine algae, Deep sea res.,25,391-402

17. Atkins W. R. G and E. G. Wilson, (1926), the phosphorus and arsenic compounds of sea water, J Mar. Biol. Assoc. UK., 14, 609-614.

18. Beauchemin D., M. E. Bednas, S.S. Berman, J. W. McLaren, I.W. M.Siu, R. E. Sturgeon, (1998), Identification and Quantitation of Arsenic Species in a Dogfish Muscle Reference Material for Trace Elements,

19. Bostrom K. and S. Valdes, (1969), Arsenic in ocean floors, Lithos,2, 351- 360.

20. Cannon J. R., J. S. Edmonds, K. A. Francesconi, C. L. Raston. J.B. Saunders, B. W. Skelton and A. H. White, (1981), Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rocklobster, the dusky shark, and some samples of human urine, Australian Journal of Chemistry, 34, 787-798.

21. Carr P. F., J. W. Pemberton, E. Nunan, (1999), Arsenic contamination at the Mole River mine, northern New South Wales, Australian Journal of Earth Sciences, 46, 861-874.

22.Canon J. R., J. S. Edmonds, K, A. Francesconi, C.L. Raston. J. B. Saunders, B. W. Skelton and A. H. White, (1981), Isolation, crystal structure and synthesis of asenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine, Australian Journal of Chemistry, 34, 787-798.

23. Ebdon L., A. P. Walton, G. E. Millward and M. Whitfield, (1987), Methylated Arsenic species in estuarine porewwaters, Appl. Organomet. Chem., 1, 427-433.

24. Edmonds J.s., Y. Shibata, K. A. Francesconi, R. J.Rippingale, M. Morita,(1997), Arsenic transformations in short marine food chains studiedby HPLC- ICP- MS,11, 281 - 287.

25. Edmonds J. S and K. A. Francesconi, (1987), Trimethylarsine oxide in estuary catfish ( Cnidoglanis macrocephalus) and school whiting (Sillago basensis) after oral administration of sodium arsenate and as a natural component of estuary catfish, The science of Total Environment, 64, 317-323.

26. Edmonds J.s. and. A. Francesconi, (1993), Asenic in seafoods: Human Detection in Environmental Sample compounds from marine organisms,

nat. Prod, Rep., 10,421-428.

27. Edmonds J. S., M. Morita, and Y. Shibata, (1987), Isolation and identification of arsenic- containing ribofuranosides and inorganic arsenic from Japanese edible seaweed, J. Chem. Soc., 1, 577-580.

28. Fraley D. M., D. Yast and S. E. Manahan, (1979), Inductively coupled plasma emission spectrometric detection of simulated high performance liquid chromatographic peaks, Anal. Chem.,51, 2225-2229.

29. Francesconi K. A., J. S. Edmonds, and M. Morita, (1994), Determination of Arsenic and Arsenic Species in Mariine Environmental Sometiamples, in:J. O. Nriagu (Ed.), Arsenic in the Enviroment, Part I: Cycling and Charaterization, John Wiley & Sons, New York, 189-219.

30. Francesconia K.A and John S. Edmonds, (1998), Arsenic Species in Marine Samples,Croatica Chemmica Acta, 71,343-359.

31. Gleyzes C., S. Tellier, R. Sabrier, P. Le Cloirec, (2001), Arsenic Characterisation in Industral Soils by Chemical Extractions, Environ. Technol. 22,27-28.

32. Gomez-Aria J. L., D. Sanchez-Rodas, R. Beltran, W. Corns, P. Stockwel, (1998), Evaluation of atomic fluorescence spectrometry as a sensitive detection technique for arsenic speciation, Appl. Organomet. Chem., 12, 439-447.

33. Greenwood N.N, Earnshaw A. (1997), Chemistry of the elements (2nd edition), Elservier, Great Britain.

34. Hanaoka Kenichi, Takashi Matsumoto and Shoji Tagawa Toshikazu Kaise, (1987), Microbial degradation of arsenobetai, the major water

soluble organoarsenic compound occurring in marine animals,

Chemosphere,16, 2545-2550.

35. Iverson D.C., M.A. Anderson, T. R.Home and R. R. Stanfoth, (1979), An evaluation of coloum chromatography and flameless atomic absorption spectrophotometry for asernic speciation as applied to aquatic symtems, Environ. Sci. Tech., 13, 1491-1494.

36. Jeffer P.Koplan, (2000), Toxicological profile for Arsenic, U.S.Department of health and human services, Public health service Agency for Toxic Substances and Disease Registry, 2-9.

37. Langston W. J., (1980), Arsenic in U.K. estuarine sediments and is availability to depsit feeding bivalves, J. Mar. Biol. Assoc Uk, 60, 869 - 881.

38. Liu j., D. H. O,Brien and K.J. Irgolic, (1996), Sylthesis of 1-O-R-5-deoxy-

 -D-ribofuranosides with (CH3)2AsO as substiuents at the 5-position and a methyl or 2',3'- dihydroxypropyl group as the aglycone in the 1- position, Appl. Organomet. Chem.10, 1-11.

39. Mattusch J.,R Wennrich, (1998), Dertamination of Anionnic, Neutral, and Cationic Species of Asenrnic by ion Chromatography with ICPMS

40. Mester Z., A. Woller, P. Fodor, (1996), determination of arsenic Speccies by High- Performance Liquid chromatography- Hydride Generation- (Ultrasonic Nebulizer) - Atomic Fluorescence Spectrometry,

Microchem.J., 54,184-194

41. Mukai H. and Y. Ambe, (1987), Determination of methylarsenic compounds in airborne particulate matter by gas chromatography with atomic absorption spectrometry, Anal. Chim. Acta, 193, 219-229

42. Munoz o., D. Velez, R. Montoro, (1999), Optimization of the solubilization, extracction and determination of inorganic arsenic

[As(III) + As(v)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry,

Analyst, 124, 601-607.

43. Myers H, and J. Osteryoung, (1973), Determination of arsenic(III) at the parts- per-billion level by differential pulse polarography, Anal. Chem., 45, 267-128

44. Nielsen F. H., S. H. Givand and D. R. Myron, (1975), Evidence of a possible requirement for arsenic by the rat, Proceedings of the Federationp of American Societies of Experimental Biology, 34, 923- 946.

45. Rubio R., A. Pradro, J. Alberti, G. Rauret, (1992), Speciation of organic and inorganic arsenic by HPLC- HG - ICP, Mikrochim. Acta, 109, 39-45.

46. Schramel O., B. Michalke, A. Kettrup,(1999), Application of capillary electrophoresis- electrospray ionisation mass spetrometry to arsenic speciation, J. Anal. At. Spectrom., 14,1339-1342

47. Scott D. L., S. Ramanathan, W. Shi, B. P. Roén, S. Daunert, (1997), Genetically Engineered Bacteria: Electrochemical Sensing Systems for Antimonite and Arsenite, Anal. Chem., 69, 16-20.

48. Ten Organoarsenic Compounds Using Microbore High-performance Liquid Chromatography Coupled With Electrospray Mass Spectrometry, J. Anal. At. Spectrom., 12, 531-536.

49. Thomas P., K. Sniatecki, (1995, Determination of trace amounts of asenric species in natural water by high- performance liquid chromatography-inductive coupled plasma mass spetrometry, J. Anal, At. Spectrom., 10, 615-618.

Một phần của tài liệu 299715 (Trang 70 - 83)

Tải bản đầy đủ (PDF)

(83 trang)