Nhiệm vụ của gán nhãn tuần tự [13] để thiết lập chuỗi quan sát được xuất hiện trong nhiều trường. Một trong những phương thức phổ biến để thực hiện gán nhãn và phân đoạn là sử dụng quy tắc HMM hoặc mô hình máy hữu hạn trạng thái để định nghĩa chuỗi các nhãn có thể xảy ra nhất cho những từ của bất cứ câu nào.
Theo những nghiên cứu về mô hình Markov ẩn và mô hình cực đại hóa Entropy ở trên. Thì CRF đã giải quyết được toàn bộ những vấn đề mà hai mô hình trên mắc phải như “ label alias ”[11].
Conditional random fields là một probabilistic framework (theo xác suất) cho việc gán nhãn và phân đoạn dữ liệu tuần tự. Thay vì sử dụng xác suất độc lập trên chuỗi nhãn và chuỗi quan sát, ta sử dụng xác suất có điều kiện P(Y | X) trên toàn bộ chuỗi nhãn được đưa bởi chuỗi mỗi chuỗi quan sát X. CRF là một mô hình đồ thị vô hướng định nghĩa một phân bố tuyến tính đơn trên các chuỗi nhãn (trình tự nhãn) được đưa ra bởi các chuỗi quan sát được. CRFs thuận lợi hơn các mô hình Markov và MEMM. Nó làm tốt hơn cả của MEMM và HMM trên số lượng chuỗi gán nhãn lớn.Ví dụ: xét ngôn ngữ tự nhiên, việc gán nhãn cho các từ trong câu sẽ tương ứng với loại từ vựng. Ở đây các câu sẽ là dữ liệu tuần tự còn nhãn cần gán chính là các từ loại
[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP only # 1.8 billion ] [PP in ] [NP September ]
Trong đó ý nghĩa của các nhãn là: NP: nounse phrase, VP: verb phrase…
Trong bài toán trích chọn thông tin nhà đất của mình thì dữ liệu tuần tự ở đây chính là các bản tin nhà đất, còn các nhãn cần gán đó là các thông tin về địa chỉ (B-DC, I-DC) hoặc diện tích (B-DT,I-DT)…