Mạng thế hệ sau NGN và hệ thống di động 4G

Một phần của tài liệu Nghiên cứu về hệ thống thông tin di động thế hệ thứ 4 (4G) (Trang 77)

3.4.1 Mạng thế hệ sau NGN

3.4.1.1 Giới thiệu chung

Bắt nguồn từ sự phát triển của công nghệ thông tin, công nghệ chuyển mạch gói và công nghệ truyền dẫn băng rộng, mạng thông tin thế hệ mới (NGN) ra đời là mạng có cơ sở hạ tầng thông tin duy nhất dựa trên công nghệ chuyển mạch gói, triển khai các dịch vụ một cách đa dạng và nhanh chóng, đáp ứng sự hội tụ giữa thoại và số liệu, giữa cố định và di động.

Nh− vậy, có thể xem mạng thông tin thế hệ mới là sự tích hợp mạng thoại PSTN, chủ yếu dựa trên kỹ thuật TDM (Time Division Multiplexing), với mạng chuyển mạch gói, dựa trên kỹ thuật IP/ATM. Nó có thể truyền tải tất cả các dịch vụ vốn có của PSTN đồng thời cũng có thể nhập một l−ợng dữ liệu rất lớn vào mạng IP, nhờ đó có thể giảm nhẹ gánh nặng của PSTN.

Tuy nhiên, NGN không chỉ đơn thuần là sự hội tụ giữa thoại và dữ liệu mà còn là sự hội tụ giữa truyền dẫn quang và công nghệ gói, giữa mạng cố định và di động. Vấn đề chủ đạo ở đây là làm sao có thể tận dụng hết lợi thế đem đến từ quá trình hội tụ này. Một vấn đề quan trọng khác là sự bùng nổ nhu cầu của ng−ời sử dụng cho một khối l−ợng lớn dịch vụ và ứng dụng phức tạp bao gồm cả đa ph−ơng tiện, phần lớn trong đó là không đ−ợc trù liệu khi xây dựng các hệ thống mạng hiện nay [2].

3.4.1.2 Đặc điểm mạng NGN

Mạng NGN có bốn đặc điểm chính:

1. Nền tảng là hệ thống mạng mở.

2. Mạng NGN là do mạng dịch vụ thúc đẩy, nh−ng dịch vụ phải thực hiện độc lập với mạng l−ới.

3. Mạng NGN là mạng chuyển mạch gói, dựa trên một giao thức thống nhất.

4. Là mạng có dung l−ợng ngày càng tăng, có tính thích ứng cũng ngày càng tăng, có đủ dung l−ợng để đáp ứng nhu cầu [2].

Tr−ớc hết, do áp dụng cơ cấu mở mà:

- Các khối chức năng của tổng đài truyền thống chia thành các phần tử mạng độc lập, các phần tử đ−ợc phân theo chức năng t−ơng ứng, và phát triển một cách độc lập.

- Giao diện và giao thức giữa các bộ phận phải dựa trên các tiêu chuẩn t−ơng ứng.

Việc phân tách làm cho mạng viễn thông vốn có dần dần đi theo h−ớng mới, nhà kinh doanh có thể căn cứ vào nhu cầu dịch vụ để tự tổ hợp các phần tử khi tổ chức mạng l−ới. Việc tiêu chuẩn hóa giao thức giữa các phần tử có thể thực hiện nối thông giữa các mạng có cấu hình khác nhau.

Tiếp đến, mạng NGN là mạng dịch vụ thúc đẩy, với đặc điểm của: • Chia tách dịch vụ với điều khiển cuộc gọi.

• Chia tách cuộc gọi với truyền tải.

Mục tiêu chính của chia tách là làm cho dịch vụ thực sự độc lập với mạng, thực hiện một cách linh hoạt và có hiệu quả việc cung cấp dịch vụ.

Thuê bao có thể tự bố trí và xác định đặc tr−ng dịch vụ của mình, không quan tâm đến mạng truyền tải dịch vụ và loại hình đầu cuối. Điều đó làm cho việc cung cấp dịch vụ và ứng dụng có tính linh hoạt cao.

Thứ ba, NGN là mạng chuyển mạch gói, giao thức thống nhất. Mạng thông tin hiện nay, dù là mạng viễn thông, mạng máy tính hay mạng truyền hình cáp, đều không thể lấy một trong các mạng đó làm nền tảng để xây dựng cơ sở hạ tầng thông tin. Nh−ng mấy năm gần đây, cùng với sự phát triển của công nghệ IP, ng−ời ta mới nhận thấy rõ ràng là mạng viễn thông, mạng máy tính và mạng truyền hình cáp cuối cùng rồi cũng tích hợp trong một mạng IP

thống nhất, đó là xu thế lớn mà ng−ời ta th−ờng gọi là “dung hợp ba mạng” [2]. Giao thức IP làm cho các dịch vụ lấy IP làm cơ sở đều có thể thực hiện nối thông các mạng khác nhau; con ng−ời lần đầu tiên có đ−ợc giao thức thống nhất mà ba mạng lớn đều có thể chấp nhận đ−ợc; đặt cơ sở vững chắc về mặt kỹ thuật cho hạ tầng cơ sở thông tin quốc gia.

Hình 3.33. Kiến trúc mạng NGN [2]

Giao thức IP thực tế đã trở thành giao thức ứng dụng vạn năng và bắt đầu đ−ợc sử dụng làm cơ sở cho các mạng đa dịch vụ, mặc dù hiện tại vẫn còn ở thế bất lợi so với các chuyển mạch kênh về mặt khả năng hỗ trợ l−u l−ợng thoại và cung cấp chất l−ợng dịch vụ đảm bảo cho số liệu. Tốc độ đổi mới nhanh chóng trong thế giới Internet, mà nó đ−ợc tạo điều kiện bởi sự phát triển của các tiêu chuẩn mở sẽ sớm khắc phục những thiếu sót này.

3.4.1.3 Cấu trúc mạng NGN 3.4.1.3.1 Cấu trúc logic 3.4.1.3.1 Cấu trúc logic

Cho đến nay, mạng thế hệ sau vẫn là xu h−ớng phát triển mới mẻ, ch−a có một khuyến nghị chính thức nào của Liên minh Viễn thông thế giới ITU về cấu trúc của nó. Nhiều hãng viễn thông lớn đã đ−a ra mô hình cấu trúc mạng thế hệ mới nh− Alcatel, Ericssion, Nortel, Siemens, Lucent, NEC, …

Nhìn chung từ các mô hình này, cấu trúc mạng mới có đặc điểm chung là bao gồm các lớp chức năng: lớp truy nhập và truyền dẫn, lớp truyền thông, lớp điều khiển, lớp ứng dụng (mô tả ở hình 3.34).

Hình 3.34. Cấu trúc logic mạng NGN [2]

Lớp truyền dẫn

- Lớp vật lý: Truyền dẫn quang với kỹ thuật ghép kênh b−ớc sóng quang DWDM sẽ đ−ợc sử dụng.

+ Truyền dẫn trên mạng lõi (Core Network) dựa vào kỹ thuật gói cho tất cả các dịch vụ với chất l−ợng dịch vụ QoS tùy yêu cầu cho từng loại dịch vụ.

+ ATM hay IP/MPLS có thể đ−ợc sử dụng làm nền cho truyền dẫn trên mạng lõi để đảm bảo QoS. (adsbygoogle = window.adsbygoogle || []).push({});

- Chức năng:

Lớp truyền tải trong cấu trúc mạng NGN bao gồm cả chức năng truyền dẫn và chức năng chuyển mạch.

Lớp truyền dẫn có khả năng hỗ trợ các mức QoS khác nhau cho cùng một dịch vụ và cho các dịch vụ khác nhau. Nó có khả năng l−u trữ lại các sự kiện xảy ra trên mạng (kích th−ớc gói, tốc độ gói, độ trễ, tỷ lệ mất gói và Jitter cho phép, … đối với mạng chuyển mạch gói; băng thông, độ trễ đối với mạng chuyển mạch kênh TDM). Lớp ứng dụng sẽ đ−a ra các yêu cầu về năng lực truyền tải và lớp truyền dẫn sẽ thực hiện các yêu cầu đó.

Lớp truy nhập

- Lớp vật lý:

+ Hữu tuyến: Cáp đồng, xDSL hiện đang sử dụng. Tuy nhiên trong t−ơng lai truyền dẫn quang DWDM, PON (Passive Optical Network) sẽ dần dần chiếm −u thế và thị tr−ờng xDSL, modem cáp dần dần thu hẹp lại.

+ Vô tuyến: thông tin di động - công nghệ GSM hoặc CDMA, truy nhập vô tuyến cố định, vệ tinh.

- Lớp 2 và lớp 3: Công nghệ IP sẽ làm nền cho mạng truy nhập. - Chức năng:

Lớp truy nhập cung cấp các kết nối giữa thuê bao đầu cuối và mạng đ−ờng trục (thuộc lớp truyền dẫn) qua cổng giao tiếp MGW thích hợp.

Mạng NGN kết nối với hầu hết các thiết bị đầu cuối chuẩn và không chuẩn nh− các thiết bị truy xuất đa dịch vụ, điện thoại IP, máy tính PC, tổng đài nội bộ PBX, điện thoại POTS, điện thoại số ISDN, di động vô tuyến, di động vệ tinh, vô tuyến cố định, VoDSL, VoIP, …

Lớp truyền thông

Thiết bị ở lớp truyền thông là các cổng truyền thông (MG– Media Gateway) bao gồm:

+ Các cổng truy nhập: AG (Access Gateway) kết nối giữa mạng lõi với mạng truy nhập, RG (Residental Gateway) kết nối mạng lõi với mạng thuê bao tại nhà.

+ Các cổng giao tiếp: TG (Trunking Gateway) kết nối giựa mạng lõi với mạng PSTN/ISDN, WG (Wireless Gateway) kết nối mạng lõi với mạng di động.

- Chức năng:

Lớp truyền thông có khả năng t−ơng thích các kỹ thuật truy nhập khác với kỹ thuật chuyển mạch gói IP hay ATM ở mạng đ−ờng trục. Lớp này thực hiện chuyển đổi các loại môi tr−ờng (nh− PSTN, FramRelay, LAN, vô tuyến, …) sang môi tr−ờng truyền dẫn gói đ−ợc áp dụng trên mạng lõi và ng−ợc lại.

Lớp điều khiển

Lớp điều khiển bao gồm các hệ thống điều khiển mà thành phần chính là chuyển mạch mềm (Softswitch) còn gọi là bộ điều khiển cổng truyền thông (Media Gateway Controller) hay Call Agent đ−ợc kết nối với các thành phần khác để kết nối cuộc gọi hay quản lý địa chỉ IP nh−: cổng báo hiệu SGW (Signaling Gateway), máy chủ truyền thông MS (Media Sever), máy chủ đặc tính FS (Feature Server), máy chủ ứng dụng AS (Application Server).

- Chức năng:

Lớp điều khiển có nhiệm vụ kết nối để cung cấp các dịch vụ thông suốt từ đầu cuối đến đầu cuối với bất kỳ loại giao thức và báo hiệu nào. Cụ thể , lớp điều khiển thực hiện:

+ Thiết lập yêu cầu, điều chỉnh và thay đổi các kết nối hoặc các luồng, điều khiển sắp xếp nhãn (Label Mapping) giữa các giao diện cổng.

+ Phân bổ l−u l−ợng và các chỉ tiêu chất l−ợng đối với mỗi kết nối (hay mỗi luồng) và thực hiện giám sát điều khiển để đảm bảo QoS.

+ Báo hiệu đầu cuối từ các trung kế, các cổng trong kết nối với lớp media. Thống kê và ghi lại các thông số về chi tiết cuộc gọi, đồng thời thực hiện các cảnh báo.

+ Thu nhận thông tin báo hiệu từ các cổng và chuyển thông tin này đến các thành phần thích hợp trong lớp điều khiển.

+ Quản lý và bảo d−ỡng hoạt động của các tuyến kết nối thuộc phạm vi điều khiển. Thiết lập và quản lý hoạt động của các luồng yêu cầu đối với chức năng dịch vụ trong mạng. Báo hiệu với các thành phần ngang cấp.

Lớp ứng dụng

Lớp ứng dụng gồm các nút thực thi dịch vụ SEN (Service Excution Node), thực chất là các server dịch vụ cung cấp các ứng dụng cho khách hàng thông qua lớp truyền tải.

- Chức năng:

Lớp ứng dụng cung cấp các dịch vụ có băng thông khác nhau và ở nhiều mức độ. Một số loại dịch vụ sẽ thực hiện làm chủ việc điều khiển logic của chúng và truy nhập trực tiếp tới lớp ứng dụng, còn một số dịch vụ khác sẽ đ−ợc điều khiển từ lớp điều khiển nh− dịch vụ thoại truyền thống. Lớp ứng dụng liên kết với lớp điều khiển thông qua các giao diện mở API. Nhờ đó mà các nhà cung cấp dịch vụ có thể phát triển các ứng dụng và triển khai nhanh chóng trên các dịch vụ mạng.

3.4.1.3.2 Cấu trúc vật lý (adsbygoogle = window.adsbygoogle || []).push({});

Cấu trúc vật lý của mạng NGN đ−ợc mô tả trên hình 3.35. Trong mạng viễn thông thế hệ mới có rất nhiều thành phần cần quan tâm, nh−ng ở đây ta chỉ đề cập những thành phần chính thể hiện rõ nét sự tiên tiến của NGN so với mạng viễn thông truyền thống. Cụ thể gồm các thành phần [2]:

1. Media Gateway (MG).

2. Media Gateway Controller (MGC - Call Agent - Softswitch). 3. Signaling Gateway (SG).

4. Media Server (MS).

5. Application Server (Feature Server).

Hình 3.35. Cấu trúc vật lý mạng NGN [2]

Cổng truyền thông - Media Gateway (MG)

Media Gateway cung cấp ph−ơng tiện để truyền tải thông tin thoại, dữ liệu, fax và video giữa mạng gói IP và mạng PSTN. Trong mạng PSTN, dữ liệu

thoại đ−ợc mang trên kênh DS0. Để truyền dữ liệu này vào mạng gói, mẫu thoại cần đ−ợc nén lại và đóng gói. Đặc biệt ở đây ng−ời ta sử dụng một bộ xử lý tín hiệu số DSP (Digital Signal Processors) thực hiện các chức năng: chuyển đổi AD (Analog to Digital), nén mã thoại/ audio, triệt tiếng dội, bỏ khoảng lặng, mã hóa, tái tạo tính hiệu thoại, truyền các tín hiệu DTMF, …

Bộ điều khiển cổng truyền thông - Media Gateway Controller (MGC)

MGC là đơn vị chức năng chính của Softswitch. Nó đ−a ra các quy luật xử lý cuộc gọi, còn MG và SG sẽ thực hiện các quy luật đó. Nó điều khiển SG thiết lập và kết thúc cuộc gọi. Ngoài ra nó còn giao tiếp với hệ thống OSS và BSS.

Cổng báo hiệu - Signalling Gateway (SG)

Signaling Gateway có chức năng t−ơng tác giữa mạng báo hiệu SS7 với mạng IP d−ới sự điều khiển của Media Gateway Controller (MGC). SG làm cho Softswitch giống nh− một nút SS7 trong mạng báo hiệu SS7. Nhiệm vụ của SG là xử lý thông tin báo hiệu.

Media Server

Media Server là thành phần lựa chọn của Softswitch, đ−ợc sử dụng để xử lý các thông tin đặc biệt. Một Media Server phải hỗ trợ phần cứng DSP với hiệu suất cao nhất.

Application Server/Feature Server

Server đặc tính là một server ở mức ứng dụng chứa một loạt các dịch vụ của doanh nghiệp. Chính vì vậy nó còn đ−ợc gọi là Server ứng dụng th−ơng mại. Vì hầu hết các Server này tự quản lý các dịch vụ và truyền thông qua mạng IP nên chúng không ràng buộc nhiều với Softswith về việc phân chia hay nhóm các thành phần ứng dụng.

3.4.2 Hệ thống di động 4G trên hạ tầng mạng NGN

Trong các hệ thống thông tin di động từ thế hệ 2.5G đến thế hệ 4G, hệ thống mạng lõi đã triển khai công nghệ chuyển mạch gói. Hệ thống mạng lõi của các hệ thống thông tin này dựa trền nền tảng mạng NGN.

Dựa theo mô hình tham chiếu của hệ thống di động 4G (hình 3.8), mạng lõi của hệ thống 4G sử dụng công nghệ chuyển mạch gói. Mạng lõi này đ−ợc xây dựng dựa trên nền tảng của mạng NGN hiện tại, nh−ng cần nâng cấp tốc độ và dung l−ợng hệ thống cũng nh− các server ứng dụng để đáp ứng yêu cầu rất lớn về tốc độ, dung l−ợng, dịch vụ của hệ thống di động 4G.

Mạng lõi hiện tại sử dụng công nghệ truyền dẫn quang SDH, và công nghệ ghép kênh theo b−ớc sóng WDM. Công nghệ truyền dẫn quang SDH cho phép tạo trên đ−ờng truyền dẫn tốc độc cao (n* 155 Mb/s) với khả năng bảo vệ của các mạch vòng. Công nghệ WDM cho phép sử dụng độ rộng băng tần rất lớn của sợi quang bằng cách kết hợp một số tín hiệu ghép kênh theo thời gian với độ dài các b−ớc sóng khác nhau và ta có thể sử dụng đ−ợc các cửa sổ không gian, thời gian và độ dài b−ớc sóng. Công nghệ WDM cho phép nâng tốc độ truyền dẫn lên 5Gb/s, 10Gb/s và 20Gb/s.

Trong hệ thống di động 4G, yêu cầu về tốc độ đạt đ−ợc cho mỗi thiết bị di động là 100Mbps ở môi tr−ờng di động. Nh− vậy để đáp ứng tốc độ cho hành triệu thuê bao thực hiện liên lạc đồng thời thì yêu cầu tốc độ truyền dẫn của mạng lõi lên tới hàng trăm Tbps. Mà tốc độ truyền dẫn của mạng lõi hiện tại sử dụng công nghệ WDM mới chỉ đạt đ−ợc tốc độ cỡ vài chục Gbps (60Gbps là tốc độ truyền dẫn mạng NGN hiện tại của VNPT).

Nh− vậy để hệ thống mạng NGN có thể đáp ứng đ−ợc yêu cầu về tốc độ và dung l−ợng cho hệ thống di động 4G, cần nâng cấp tốc độ truyền dẫn của mạng NGN bằng cách đẩy mạnh triển khai công nghệ WDM, hạn chế sử dụng

công nghệ không đạt đ−ợc tốc độ cao SDH, PDH. Nếu ch−a có công nghệ truyền dẫn quang đạt đ−ợc tốc độ cao hơn công nghệ WDM thì cần triển khai nhiều đ−ờng trục sử dụng WDM.

Nh− vậy mạng NGN chính là cơ sở hạ tầng hệ thống cho các hệ thống thông tin di động. Tuy nhiên, tuy theo tốc độ của từng hệ thống thông tin di động mà yêu cầu mạng NGN có tốc độ, dung l−ợng khác nhau.

Ch−ơng 4. triển khai hệ thống di động 4G ở Việt Nam

4.1 Hiện trạng mạng thông tin di động Việt Nam và trên thế giới

Hiện nay, ở n−ớc ta có nhiều nhà khai thác thông tin di động: MobiFone và VinaPhone, Viettel, S-Phone, HT Mobile, EVN Telecom. Các hãng mới chỉ triển khai các công nghệ 2.5G (MobiFone, VinaPhone, Viettel) và 3G (S- Phone, HT Mobile, EVN Telecom). Hệ thống 2G tuy có sự tối −u hóa cho các dịch vụ thoại thời gian thực nh−ng chúng có khả năng rất hạn chế trong việc cung cấp các dịch vụ đa ph−ơng tiện băng rộng vì tốc độ hệ thống của các mạng này còn ch−a cao, và màn hình hiển thị nhỏ. Các hệ thống 3G có tốc độ nhanh hơn lên tới 384kb/s (2Mb/s ở môi tr−ờng Indoor) và có màn hình tốt hơn hệ thống 2G. Thông tin truyền qua Internet ngày càng phong phú. Tuy nhiên khả năng của các hệ thống di động 3G không thể đáp ứng đ−ợc nhu cầu

Một phần của tài liệu Nghiên cứu về hệ thống thông tin di động thế hệ thứ 4 (4G) (Trang 77)