4.2.2. Liên kết mạng ... 4.2.3. Bài toán huấn luyện mạng ... 4.3. Mạng HOPFIELD ... 4.3.1. Huấn luyện mạng ... 4.3.2. Sử dụng mạng ... 4.4. Mạng Nơron đa khớp dùng cho phân cụm ... 4.4.1. Xây dựng lớp mạng Layer1 cho tối ƣu các trung tâm cụm ... 4.4.2. Xây dựng lớp mạng Layer2 cho tối ƣu các độ thuộc ... 4.5. Sự hội tụ của FBACN ... 4.5.1. Chứng minh sự hội tụ của FBACN ... 4.5.2. Sự hội tụ FBACN liên tục của Layer1 ... 4.5.3. Giải thuật của FBACN và FBACN với việc học ...
58 61 61 61 61 62 62 63 63 65 68 72 72 74 75
Thuật toán FCM-Cải tiến đã khắc phục đƣợc một số hạn chế của thuật toán FCM và εFCM. Tuy nhiên nó lại có nhƣợc điểm là mỗi khi có yêu cầu phân cụm thì thuật toán sẽ chạy từ đầu, các kết quả của các mẫu trƣớc là không sử dụng đƣợc cho lần sau nên thời gian chạy khá lớn nếu nhƣ kích thƣớc mẫu lớn. Vì vậy, trong chƣơng này, chúng ta nghiên cứu một mô hình mạng Nơron đa khớp dùng cho bài toán phân cụm mờ (a fuzzy bi-directional associative clustering network –FBACN). Mạng Nơron này chủ yếu dựa vào tài liệu của hai tác giả Chih-Hsiu Wei, Chin - Shyurng Fahn.
4.1. Tổng quan về mạng Nơron
Trƣớc hết chúng ta ai cũng biết rằng tri thức của loài ngƣời cho đến nay hết sức phong phú, sâu rộng và đa dạng. Nó bao gồm những hiểu biết của
đến những hiểu biết vĩ mô về trái đất, về hệ mặt trời, hệ thiên hà, ... . hiểu biết về thế giới tự nhiên và xã hội, về các nghành khoa học, kỹ thuật khác nhau nhƣ: toán, lý, hóa, công nghệ thông tin và cả những hiểu biết về bản thân con ngƣời. Thế nhƣng có một điều mà có vẻ nhƣ là một nghịch lý đó là chúng ta biết "rất ít" về chính bộ não của chúng ta. Hơn nữa do nhu cầu ngày càng cao trong việc giải quyết các vấn đề phức tạp và do bản chất của con ngƣời là không muốn bằng lòng với hiện tại mà luôn muốn vƣơn tới những gì cao hơn, hoàn thiện hơn. Có lẽ chính vì những điều trên mà thuật ngữ "mạng Nơron" hoặc "mạng Nơron nhân tạo" đã ra đời. Các thuật ngữ đó nói đến một nghành kỹ thuật mới mà nó đòi hỏi kiến thức từ nhiều nghành khoa học khác nhau nhƣ toán học, vật lý học, hóa học, sinh vật học, tâm lý học, thần kinh học, ... và tất cả chỉ nhằm làm sao tạo ra những chiếc máy tính hoạt động giống nhƣ " bộ não " của chính chúng ta.
Mạng Nơron nhân tạo hay thƣờng đƣợc gọi ngắn gọn là mạng Nơron là một mô hình toán học hay mô hình tính toán đƣợc xây dựng dựa trên các mạng Nơron sinh học. Nó gồm có một nhóm các Nơron nhân tạo(nút) nối với nhau, và xử lý thông tin bằng cách truyền theo các kết nối và tính giá trị mới tại các nút. Trong nhiều trƣờng hợp, mạng Nơron nhân tạo là một hệ thống thích ứng, tự thay đổi cấu trúc của mình dựa trên các thông tin bên ngoài hay bên trong chảy qua mạng trong quá trình học.
Trong thực tế sử dụng, nhiều mạng Nơron là các công cụ mô hình hóa dữ liệu thống kê phi tuyến. Chúng có thể đƣợc dùng để mô hình hóa các mối quan hệ phức tạp giữa dữ liệu vào và kết quả hoặc để tìm kiếm các dạng mẫu trong dữ liệu.
Hình 4.1: Mô hình mạng Nơron
Mạng Nơron nhân tạo (Artificial Neural Network) là một mô hình toán học bao gồm các nút xử lý thông tin cơ sở (gọi là đơn vị xử lý hoặc Nơron) có mối liên hệ tƣơng hỗ cao, tiến hành xử lý thông tin song song và phân tán có năng lực tính toán mạnh (ví dụ hiện nay nó có thể học, nhớ và suy diễn từ mẫu dữ liệu...). Mỗi liên kết giữa hai Nơron kèm theo một trọng số nào đó, đặc trƣng cho đặc tính kích hoạt/ức chế giữa các Nơron. Có thể xem trọng số là phƣơng tiện để lƣu giữ thông tin dài hạn trong mạng Nơron và nhiệm vụ của quá trình huấn luyện (hay còn gọi là quá trình học) mạng là cập nhật các trọng số khi có thêm thông tin về các mẫu học, hay nói cách khác, các trọng số đƣợc điều chỉnh sao cho dáng điệu vào ra của nó mô phỏng hoàn toàn phù hợp với môi trƣờng đang xem xét. Vì vậy, cấu trúc của mạng Nơron chủ yếu đƣợc đặc trƣng bởi loại của các Nơron và mối liên hệ xử lý thông tin giữa chúng và do đó, mạng Nơron có rất nhiều ứng dụng trong nhiều lĩnh vực nhƣ nhận dạng, phân lớp ảnh, phân tích - nén dữ liệu, các bài toán tối ƣu, dự báo, chuẩn đoán,… Và xu thế hiện đại đó là sự kết hợp mạng Nơron với logic mờ.
4.2. Cấu trúc mạng Nơron 4.2.1. Hàm kích hoạt 4.2.1. Hàm kích hoạt
Hàm kích hoạt của từng Nơron trong mạng Nơron đóng vai trò quan trọng trong sự liên kết giữa các Nơron. Hàm này đặc trƣng cho mức độ liên kết giữa các Nơron.
Trong lý thuyết mạng Nơron, phép tổng hợp các tín hiệu đầu vào thƣờng đƣợc kí hiệu dƣới dạng: 1 n j i ji i net x với xj,j 1..n là các tín hiệu vào. ji (j1,...,jn) là trọng số, n là số tín hiệu đầu vào. Đầu ra của Nơron j thƣờng đƣợc kí hiệu là outj hoặc fj, đƣợc gọi là hàm kích hoạt.
1 (n ( ) ) j j i i i out f f x t
, với là ngƣỡng kích hoạt Nơron, t là thời gian, f là hàm kích hoạt.