Graphit xốp 2 Pt/C 3 PtSn/C

Một phần của tài liệu Nghiên cứu chế tạo vật liệu màng mỏng chứa Platin, Thiếc trên nền dẫn điện và hoạt tính điện hóa của chúng (Trang 40 - 44)

Phân tích hình 22 chúng tôi thu được thế oxi hóa (Epa) và thế khử (Epc) của các điện cực như sau:

Mẫu Epa Epc ΔE

C xốp 0,384 0,035 0,349

Pt/C 0,378 0,065 0,313

Pt,Sn/C 0,286 0,148 0,138

Bảng 4: Các giá trị Epa, Epc của các điện cực nghiên cứu trong dung dịch ferro- ferri xyanua 0,01M trong môi trường NaOH 0,1M.

Sự khác nhau giữa thế oxi hóa (Epa) và thế khử (Epc) là đặc trưng cho độ thuận nghịch điện hóa của phản ứng điện cực. Nếu giá trị ΔE càng nhỏ thì độ thuận nghịch của phản ứng điện cực càng tăng. Bảng 4 cho thấy độ thuận nghịch của điện cực PtSn/C là tốt nhất. Từ đó chúng tôi có thể dự đoán khả năng hoạt động điện hóa của điện cực Pt/C; PtSn/C đều rất tốt và có thể điện cực PtSn/C có khả năng hoạt động điện hóa cao hơn điện cực Pt/C trong một số trường hợp cụ thể.

Trên đường phân cực vòng; ip,a là đặc trưng cho sự chuyển hóa Fe2+ + Fe3+, chúng tôi xác định được giá trị mật độ dòng ứng với các pic của điện cực. Mật độ dòng càng lớn thì khả năng chuyển hóa càng cao.

Mẫu ( 1) pa i mA cm ( 1) pa i mA cm Pt/C 8,921 -7,202 PtSn/C 7,372 -5,496

Bảng 5: Mật độ dòng ứng với các đỉnh pic của điện cực Pt/C, PtSn/C trong ferro-ferri xyanua 0,01M trong môi trường NaOH 0,1M

Trong động học điện hóa trao đổi electron thì đại lượng dòng trao đổi io là một thông số rất quan trọng vì nó có quan hệ chặt chẽ với tốc độ của phản ứng điện hóa. Mặt khác, dòng trao đổi io đối với một phản ứng oxi hóa khử nhất định nào đó sẽ thay đổi khi xảy ra trên bề mặt kim loại khác nhau. Nói cách khác, dòng trao đổi io phụ thuộc vào bản chất kim loại, là thước đo khả năng xúc tác của vật liệu kim loại. Vì thế chúng tôi tiến hành đo đường cong phân cực dòng-thế của các điện cực khảo sát trong dung dịch ferro-ferri xyanua 0,1M trong môi trường NaOH 0,1M và thu được kết quả thể hiện trên hình 23.

Hình 23: Đường phân cực đơn của điện cực nghiên cứu trong dung dịch ferri-ferro xyanua kali 0,1M trong dung dịch NaOH 0,1M

1. Graphit xốp 2. Pt 3. Pt/C 4. PtSn/C

Để tính được giá trị io, chúng tôi tiến hành chuyển đường đường phân cực i-U thành đường phân cực dạng U – lgio và thu được kết quả như trong bảng 6.

Hình 24: Dạng đường phân cực U(V)-lgi 1. Graphit xốp 2. Pt 3. Pt/C 4. PtSn/C Điện cực io (mA) E (V) Graphit xốp 0,136 0,220 Pt 0,550 0,172 Pt/C 1,089 0,217 PtSn/C 1,977 0,221

Bảng 6: Giá trị io và thế U(V) ứng với các điện cực nghiên cứu trong dung dịch ferri-ferro xyanua kali 0,1M trong dung dịch NaOH 0,1M

Kết quả cho thấy io của điện cực PtSn/C là lớn nhất, gấp 3,6 lần io của điện cực Pt và io của điện cực Pt/C gấp gần 2 lần io của điện cực Pt, điều đó chứng tỏ rằng các điện cực PtSn/C và Pt/C có thể sử dụng để làm vật liệu xúc tác điện hóa.

4.3.3. Khả năng oxi hóa điện hóa etanol của các điện cực nghiên cứu

Nhiều phản ứng điện hóa chỉ xảy ra với tốc độ đáng kể khi quá thế η rất lớn

(tức là ở xa điện thế cân bằng), kĩ thuật xúc tác điện hóa cho phép tiến hành phản ứng với tốc độ lớn ngay tại quá thế rất nhỏ, hay nói khác đi là ở lân cận điện thế điện cực cân bằng. Những chất xúc tác có thể là kim loại điện cực, các chất bị hấp phụ trên điện cực hoặc các chất hòa tan trong dung dịch [4].

Ngày nay pin nhiên liệu đang là lĩnh vực hấp dẫn với việc hướng tới việc biến năng lượng hóa học thành điện năng một cách dễ dàng. Đặc biệt những vật liệu có thể làm việc ở nhiệt độ thấp trong hệ thống các dụng cụ cầm tay. Rất nhiều nghiên cứu về việc sử dụng metanol làm nhiên liệu cho quá trình oxi hóa trực tiếp trong pin nhiên liệu. Nhưng metanol rất độc và không thân thiện với môi trường. Do đó etanol được điều chế từ quá trình lên men được đề xuất làm năng lượng sinh học thay thế, etanol an toàn hơn, thuận tiện và có năng lượng cao hơn (8,01 kWhkg-1) [19]

Từ những kết quả thu được ở phần 3, chúng tôi tiến hành sử dụng các điện cực Pt/C, PtSn/C làm điện cực xúc tác điện hóa cho quá trình oxi hóa etanol trong môi trường H2SO4 0,5M.

Chúng tôi tiến hành đo các đường phân cực vòng trên thiết bị đo Potentiostat PGS-HH8 với các điều kiện thí nghiệm:

- Tốc độ quét: 10 mV/s - Độ nhạy 2

- Nhiệt độ phòng. - Khoảng thế: 0,1÷1,3.

Tiến hành khảo sát ảnh hưởng của điện cực graphit, graphit xốp Sn/C đối với quá trình oxi hóa etanol, kết quả thể hiện trên hình 25.

Hình 25: Đường cong phân cực vòng của các điện cực trong dung dịch H2SO4

0,5M và C2H5OH 0,5M

Một phần của tài liệu Nghiên cứu chế tạo vật liệu màng mỏng chứa Platin, Thiếc trên nền dẫn điện và hoạt tính điện hóa của chúng (Trang 40 - 44)