Số tiến trỡnh 1 15,899 s 2 13,473 s 19,129 s 4 16,328 s 17,608 s 19,122 s 8 29,966 s 25,251 s 23,526 s 16 1 m 06,535 s 44,004 s 41,709 s
Hỡnh 3.1: Thời gian thực hiện của thuật toỏn Jacobi song song với bậc của ma trận A là 104
Ta nhận thấy chỉ duy nhất một lần thời gian thực hiện thuật toỏn Jacobi song song với 1 node 2 tiến trỡnh nhanh hơn thời gian thực hiện với 1 tiến trỡnh, cú hệ
số gia tốc là 1,18. Lượng thời gian giảm đi do giảm được tính tốn khơng bù đắp nổi chi phí truyền thơng khi cĩ nhiều tiến trỡnh cựng tham gia. Mặt khỏc ta cũng nhận thấy khi số tiến trỡnh càng ớt tăng số node thời gian sẽ tăng lên. Chứng tỏ
thời gian truyền thơng giữa các node là đáng kể và lâu hơn thời gian truyền thụng trờn một node. Khi số tiến trỡnh càng tăng thỡ sử dụng càng nhiều node thời gian sẽ giảm đi đáng kể. Bậc của ma trận A mà bằng 4.104 thỡ thời gian thực hiện như sau: Số node Số tiến trỡnh 1 2 4 1 4 m 22,930
KILOBOOKS.COMs s 2 2 m 40,256 s 2 m 53,667 s 4 2 m 40,055 s 2 m 22,296 s 2 m 12,572 s 8 3 m 40,030 s 2 m 57,010 s 2 m 04,943 s 16 6 m 16,950 s 4 m 23,142 s 3 m 03,719 s
Hỡnh 3.2: Thời gian thực hiện của thuật toỏn Jacobi song song với cỡ của ma trận A là 4.104 Số node Số tiến trỡnh 1 2 4 2 1,640 1,514 4 1,643 1,846 1,983 8 1,195 1,485 2,104 16 0,697 0.999 1,431
Hỡnh 3.2: Hệ số tăng tốc của thuật tốn Jacobi song song với bậc của ma trận A là 4.104
Rừ ràng khi bậc của ma trận A tăng lên, lượng tính tốn tăng lên, lúc này khi chia xẻ cơng việc giữa cỏc tiến trỡnh thỡ thời gian giảm đi do giảm đươc tính tốn
KILOBOOKS.COM
8 thực hiện trờn 4 node thỡ thời gian tớnh toỏn đĩ giảm hơn một nửa, hệ số gia tốc
đạt giá trị lớn nhất.
3.4.3 Định hướng phát triển
Tiếp tục đánh giá so sánh thời gian hiệu năng thực hiện của thuật tốn JOR, SOR song song với thuật tốn Jacobi song song. Tỡm hiểu và thử nghiệm một số
phương pháp lặp khác để đưa về song song hố giải hệ đại số tuyến tính, như R/B SOR, JSOR, PSOR. Từ đĩ hồn thiện hơn những nghiên cứu về thuật tốn lặp song song giải hệđại số tuyến tính.
KILOBOOKS.COM
KẾT LUẬN
Khố luận đĩ trỡnh bày sơ lược một số kiến thức tổng quan về xử lí song song gồm kiến trúc song song, các thành phần chính của máy tính song song, thiết kế và
đánh giá một thuật tốn song song và kiến trúc cụm máy tính của trung tâm tính tốn hiệu năng cao. Khố luận cũng đĩ giới thiệu về giao diện truyền thụng điệp MPI nhằm mục đích áp dụng lập trỡnh MPI với ngụn ngữ C cho bài tốn giải hệ đại số tuyến tính bằng phương pháp lặp. Nội dung chính của khố luận là giới thiệu một số phương pháp lặp giải hệ phương trỡnh đại số tuyến tính, đồng thời trỡnh bày một số thuật toỏn lặp song song. Cuối cựng đưa ra được chương trỡnh thử
nghiệm và đánh giá những kết quả thu được bước đầu. Định hướng phát triển tiếp theo là tiếp tục nghiên cứu các thuật tốn lặp song song để hồn thiện hơn đề tài này.
KILOBOOKS.COM
TÀI LIỆU THAM KHẢO
1. Parallel overrlaxation algorithm for systems of linear equations – Rudnei dias da Cunha, Tim Hopkins – UK
2. Designing and building parallel programs – Ian Fotster , 1995
3. Xử lí song song và phân tán – Đồn Văn Ban - 2006