Các phương pháp này được dùng trong mạng cơ sở IP tương lai dựa vào mức độ mong muốn tương thích với các phương thức truyền TCP và UDP triển khai hiện nay trong hệ thống đầu cuối. XCP, chẳng hạn, dường như là phương pháp mạnh nhất để cải thiện toàn bộ hiệu suất của mạng, ít nhất nếu mạng là mạng tốc độ cao. Nhưng XCP đòi hỏi đòi hỏi sự thích ứng của phương thức truyền thông trong hệ thống đầu cuối.
Tương phản với XCP, (F)EWA không cần bất kì sự thay đổi nào trong hệ thống đầu cuối. Nhưng (F)EWA không mạnh như XCP, cửa sổ gởi của TCP phía gởi không thể được điều khiển chính xác như XCP.
CSFQ không cung cấp phản hồi rõ cho (TCP) phía gởi. Nó phát triển chủ yếu để tăng tính bình đẳng giữa các luồng trong (phần) mạng. Do đó, độ gia tăng hiệu suất khá bị giới hạn. Nhưng FBA-TCP như là sự mở rộng của CSFQ có thể là ứng cử tiềm năng cho sự cải thiện điều khiển chống tắc nghẽn trong mạng cơ sở IP. Bất lợi chính của FBA-TCP là các router biên trong phần mạng có khả năng CSFQ phải chứa thông tin mỗi luồng để dán nhãn gói của luồng. Phương pháp này có thể
Chương 3: Các phương pháp điều khiển tắc nghẽn
50
chỉ làm việc nếu số luồng đi qua router biên là khá ít. Sự khác nhau của XCP và FBA-TCP là XCP dán nhãn các gói trong giao thức truyền của hệ thống đầu cuối trong khi FBA-TCP dán nhãn (lại) các gói trong các router của phần mạng có khả năng CSFQ.
Khuyết điểm chính của XCP là nó có sự phức tạp lớn so với các phương pháp khác. Thêm vào đó, XCP không thể triển khai dần dần trong phần mạng. Nếu ít nhất 1 router hay hệ thống đầu cuối trong đường dẫn mạng không thể đương đầu với XCP, XCP không được thực hiện và TCP chuẩn được dùng thay cho nó. Nhưng XCP hứa hẹn hệ số hiệu suất mong muốn cao nhất so với các phương pháp - ít nhất trong mạng tốc độ cao.
3.5 Kết luận chương
Chương này đã hệ thống các phương pháp điều khiển tắc nghẽn. Các phương pháp đó có thể triển khai dần và liệu hiệu suất của nó có giảm khi triển khai như thế không. Mỗi phương pháp hoạt động theo một nguyên tắc khác nhau và phù hợp với từng hoàn cảnh khác nhau. Theo ưu tiên, ứng cử viên đầy hứa hẹn cho việc điều khiển tắc nghẽn trong mạng cơ sở IP là XCP. Do đó, nó nên được nghiên cứu chi tiết trong các viễn cảnh và lưu lượng tải thay đổi khác nhau. Phần tiếp theo sẽ mô phỏng điều khiển tắc nghẽn dùng thuật toán tăng giảm trong các giao thức.
Chương 4: Chương trình mô phỏng điều khiển tắc nghẽn dùng thuật toán tăng giảm
51
Chương 4
CHƯƠNG TRÌNH MÔ PHỎNG ĐIỀU KHIỂN TẮC NGHẼN DÙNG THUẬT TOÁN TĂNG GIẢM
4.1 Giới thiệu chương
Nội dung chương 4 mô phỏng thuật toán tăng giảm. Mục đích chính là phân tích sự hội tụ đến tính bình đẳng và hiệu quả của các thuật toán. Ở đây ta chỉ đề cập đến thuật toán tăng giảm tuyến tính, từ đó thấy rằng AIMD là thuật toán đảm bảo hội tụ đến tính hiệu quả và bình đẳng so với các thuật toán tăng giảm khác. Mô phỏng cho thuật toán này được phân tích trong 4.3.1. Ngoài ra chương 4 còn mô phỏng tính bình đẳng, hiệu quả của giao thức điều khiển tắc nghẽn TCP và XCP. Trên thực tế tính bình đẳng, hiệu quả còn chịu nhiều ảnh hưởng khác nhau như thời gian vòng truyền RTT không đồng nhất, sử dụng các dịch vụ khác nhau, số lượng luồng đang truyền dữ liệu,... Công cụ mô phỏng là NS2, kết quả mô phỏng là các đồ thị và minh họa mạng NAM được phân tích trong 4.3.2.