Hướng phát triển

Một phần của tài liệu Đề tài kỹ thuật định danh khuôn mặt dựa vào mẫu nhị phân (Trang 71 - 80)

Mục tiêu cho sự phát triển nghiên cứu này, sẽ chú trọng đến sự canh chỉnh độ quay của khuôn mặt, sự che khuất toàn diện nhằm tạo ra ảnh chuẩn và nâng cao hiệu quả nhận dạng đạt độ chính xác tốt nhất.

TÀI LIỆU THAM KHẢO

56 .

[1]. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. [2]. http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html.

B. Tiếng Anh

[3]. S.Z. Li and A.K. Jain, eds (2005). Handbook of Face Recognition, Springer, London.

[4]. T. Ahonen, A. Hadid, and M. Pietikainen (2006). ‘Face description with local binary patterns: Application to face recognition’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037– 2041.

[5]. P. N. Belhumeur, J. Hespanha, and D. J. Kriegman (1997). ‘Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720.

[6]. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle (2007). ‘Greedy layer-

wise training of deep networks’. In Proc. Adv. Neural Inf. Process. Syst., pp. 153–

160.

[7]. Z. Cao, Q. Yin, X. Tang, and J. Sun (2010). ‘Face recognition with learning-based descriptor’. in Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 2707–2714. [8]. Y. Gong and S. Lazebnik (2011). ‘Iterative quantization: A procrustean approach

to learning binary codes’. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 817–824.

[9]. G. E. Hinton, S. Osindero, and Y.-W. The (2006). ‘A fast learning algorithm for

deep belief nets’. Neural Comput., vol. 18, no. 7, pp. 1527–1554.

[10]. G. B. Huang, H. Lee, and E. Learned-Miller (2012). ‘Learning hierarchical

representations for face verification with convolutional deep belief networks’. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 2518–2525.

[11]. S. U. Hussain, T. Napoleon, F. Jurie (2012). ‘Face recognition using local

57

[12]. A.Hyvarinen, J. Hurri, and P. O. Hoyer (2009). ‘Independent component

analysis’. Natural Image Statist., vol. 39, pp. 151–175.

[13]. J. Kittler, A. Hilton, M. Hamouz, and J. Illingworth (2004). ‘3d assisted face recognition: A survey of 3d imaging, modelling and recognition approachest’. In Proc. Eur. Conf. Comput. Vis., pp. 469–481.

[14]. Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng (2011). ‘Ica with reconstruction

cost for efficient overcomplete feature learning’. In Proc. Adv. Neural Inf. Process. Syst., pp. 1017–1025.

[15]. Z. Lei, M. Pietikainen, and S. Z. Li (2014). ‘Learning discriminant face

descriptor’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 289–302. [16]. X. Li, C. Shen, A. R. Dick, and A. van den Hengel (2013). ‘Learning compact

binary codes for visual tracking’. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 2419–2426.

[17]. C. Liu and H. Wechsler (2002). ‘Gabor feature based classification using the

enhanced Fisher linear discriminant model for face recognition’. IEEE Trans. Image Process., vol. 11, no. 4, pp. 467–476.

[18]. J. Lu, Y.-P. Tan, and G. Wang (2013). ‘Discriminative multimanifold analysis for face recognition from a single training sample per person’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 39– 51.

[19]. M. Norouzi, D. Fleet, and R. Salakhutdinov (2012). ‘Hamming distance metric

learning’. In Proc. Adv. Neural Inf. Process. Syst., pp. 1070–1078.

[20]. S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011). ‘Contractive auto-encoders: Explicit invariance during feature extraction’. In Proc. Int. Conf. Mach. Learn., pp. 833–840.

[21]. T. Trzcinski and V. Lepetit (2012). ‘Efficient discriminative projections for

58

[22]. M. Turk and A. Pentland (1991). ‘Eigenfaces for recognition’. J. Cogn. Neurosci., vol. 3, no. 1, pp. 71–8.

[23]. J. Wang, S. Kumar, and S.-F. Chang (2010). ‘Semi-supervised hashing for

scalable image retrieval’. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 3424–3431.

[24]. Y. Weiss, A. Torralba, and R. Fergus (2008). ‘Spectral hashing’. In Proc. Adv. Neural Inf. Process. Syst., pp. 1753–1760.

[25]. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld (2003). ‘Face recognition:

A literature survey’. ACM Comput. Surveys, vol. 35, no. 4, pp. 399–458.

[26]. S. Lucey, A. B. Ashraf, and J. Cohn (2007). ‘Investigating spontaneous facial action recognition through AAM representations of the face’. In Face Recognition Book. Mamendorf, Germany: Pro Literatur Verlag.

[27]. K.-C. Huang, S.-Y. Huang, and Y.-H. Kuo (2010). ‘Emotion recognition based on a novel triangular facial feature extraction method’ In Proc. Int. Joint Conf. Neural Networks, pp. 1–6.

[28]. Y.-L. Tian, T. Kanade, and J. Cohn (2001). ‘Recognizing action units for facial expression analysis’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 97–115.

[29]. Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro (2015). ‘Automatic Analysis of Facial Affect: A Survey of Registration, Representation, and Recognition’. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 37, no. 6.

[30]. N. Dalal and B. Triggs (2005). ‘Histograms of oriented gradients for human detection’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 886– 893.

59

[31]. T. Ahonen, A. Hadid, and M. Pietikainen (2006). ‘Face description with local binary patterns: Application to face recognition’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041.

[32]. E. Meyers and L. Wolf (2008 ). ‘Using biologically inspired features for face processing’. Int. J. Comput. Vis., vol. 76, no. 1, pp. 93–104.

[33]. E. Sariyanidi, H. Gunes, M. Gcokmen, and A. Cavallaro (2013). ‘Local Zernike moment representations for facial affect recognition’. In Proc. British Machine Vision Conf., pp. 103–108, vol. 13.

[34]. C. Shan, S. Gong, and P. W. McOwan (2009). ‘Facial expression recognition based on local binary patterns: A comprehensive study’. Image Vis. Comput., vol. 27, no. 6, pp. 803–816.

[35]. T. Wu, N. Butko, P. Ruvolo, J. Whitehill, M. Bartlett, and J. R. Movellan (2011). ‘Action unit recognition transfer across datasets’. In Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 889–896.

[36]. V. Ojansivu and J. Heikkilca (2008). ‘Blur insensitive texture classification using local phase quantization’. In Proc. Int. Conf. Image Signal Process., pp. 236–243. [37]. B. Jiang, M. Valstar, B. Martinez, and M. Pantic (2014). ‘Dynamic appearance

descriptor approach to facial actions temporal modelling’. IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 44, no. 2, pp. 161–174.

[38]. B. Jiang, M. Valstar, and M. Pantic (2011). ‘Action unit detection using sparse appearance descriptors in space-time video volumes’. In Proc. IEEE Int.Conf. . Face Gesture Recognit., pp. 314–321.

[39]. L. Wiskott, J.-M. Fellous, N. Kuiger, and C. von der Malsburg (1997). ‘Face recognition by elastic bunch graph matching’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 775–779.

60

[40]. J.-K. Kamarainen, V. Kyrki, and H. Kalviainen (2006). ‘Invariance properties of Gabor filter-based features—Overview and applications’. IEEE Trans. Image Process., vol. 15, no. 5, pp. 1088– 1099.

[41]. T. Gritti, C. Shan, V. Jeanne, and R. Braspenning (2008). ‘Local features based facial expression recognition with face registration errors’. In Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 1–8.

[42]. K. Sikka, T. Wu, J. Susskind, and M. Bartlett (2012). ‘Exploring bag of words architectures in the facial expression domain’. In Proc. Eur. Conf. Comput. Vis. Workshops Demonstrations, pp.250–259.

[43]. S. Lazebnik, C. Schmid, and J. Ponce (2006). ‘Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories’. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2, pp. 2169–2178.

[44]. S. Nikitidis, A. Tefas, N. Nikolaidis, and I. Pitas (2012). ‘Subclass discriminant nonnegative matrix factorization for facial image analysis’. Pattern Recognit., vol. 45, no. 12, pp. 4080–4091.

[45]. R. Zhi, M. Flierl, Q. Ruan, and W. Kleijn (2011). ‘Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition’. IEEE Trans. Systems, Man, Cybern. B, Cybern., vol. 41, no. 1, pp. 38–52.

[46]. S. Cotter (2010. ‘Sparse representation for accurate classification of corrupted and occluded facial expressions’. In Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 838–841.

[47]. M. H. Mahoor, M. Zhou, K. L. Veon, S. M. Mavadati, and J. F. Cohn (2011 ). ‘Facial action unit recognition with sparse representation’. In Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 336–342.

[48]. P. O. Hoyer (2004). ‘Non-negative matrix factorization with sparseness constraints’. J. Mach. Learn. Res., vol. 5, pp. 1457–1469.

61

[49]. E. Candes and M. Wakin (2008). ‘An introduction to compressive sampling’. IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30.

[50]. C. M. Bishop, and N. M. Nasrabadi (2006). Pattern Recognition and Machine Learning. New York, NY, USA. Springer.

[51]. L. A. Jeni, J. Girard, J. Cohn, and F. De La Torre (2013). ‘Continuous AU intensity estimation using localized, sparse facial feature space’. In Proc. IEEE Int. Conf. Autom. Face and Gesture Recognit. Workshops, pp. 1–7.

[52]. Y. Zhu, F. De la Torre, J. Cohn, and Y.-J. Zhang (2011). ‘Dynamic cascades with bidirectional bootstrapping for action unit detection in spontaneous facial behavior’. IEEE Trans. Affective Comput., vol. 2, no. 2, pp. 79–91.

[53]. S. Kaltwang, O. Rudovic, and M. Pantic (2012). ‘Continuous pain intensity estimation from facial expressions’. In Proc. Int. Symp. Adv.Vis. Comput., pp. 368–377.

[54]. S. Koelstra, M. Pantic, and I. Patras (2010). ‘A dynamic texture-based approach to recognition of facial actions and their temporal models’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 1940–1954.

[55]. M. Valstar, H. Gunes, and M. Pantic (2007). ‘How to distinguish posed from spontaneous smiles using geometric features’. In Proc. ACM Int. Conf. Multimodal Interfaces, pp. 38–45.

[56]. M. Valstar, M. Pantic, Z. Ambadar, and J. Cohn (2006). ‘Spontaneous vs. posed facial behavior: Automatic analysis of brow actions’. In Proc. ACM Int. Conf. Multimodal Interfaces, pp. 162–170.

[57]. M. Valstar and M. Pantic (2012). ‘Fully automatic recognition of the temporal phases of facial actions’. IEEE Trans. Systems, Man, Cybern. B, Cybern., vol. 42, no. 1, pp. 28–43.

62

[58]. G. Zhao and M. Pietikcainen (2007). ‘Dynamic texture recognition using local binary patterns with an application to facial expressions’. IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 915–928.

[59]. B. Jiang, M. Valstar, B. Martinez, and M. Pantic (2014). A Dynamic appearance descriptor approach to facial actions temporal modelling’. IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 44, no. 2, pp. 161–174.

[60]. T. Wu, M. Bartlett, and J. Movellan (2010). ‘Facial expression recognition using Gabor motion energy filters’. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 42–47.

[61]. F. Long, T. Wu, J. R. Movellan, M. S. Bartlett, and G. Littlewort (2012). ‘Learning spatiotemporal features by using independent component analysis with application to facial expression recognition’. Neurocomputing, vol. 93, no. 0, pp. 126–132.

[62]. P. Yang, Q. Liu, and D. Metaxas (2007). ‘Boosting coded dynamic features for facial action units and facial expression recognition’. In Proc. IEEE Conf. Comput. Vis. Pattern Recognition, pp. 1–6.

[63]. P. Yang, Q. Liu, and D. Metaxas (2008). ‘Similarity features for facial event analysis’. In Proc. Eur. Conf. Comput. Vis., vol. 5302,pp. 685–696.

[64]. P. Yang, Q. Liu, and D. N. Metaxas (2011). ‘Dynamic soft encoded patterns for facial event analysis’. Comput. Vis. Image Understanding, vol. 115, no. 3, pp. 456–465.

[65]. P. Viola and M. Jones (2001). ‘Rapid object detection using a boosted cascade of simple features’. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 1, pp. 511–518.

[66]. T. Simon, M. H. Nguyen, F. De la Torre, and J. Cohn (2010). ‘Action unit detection with segment-based SVMs’. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2737–2744.

63

[67]. Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun (2011). ‘Ask the locals: Multi-way local pooling for image recognition’. In Proc. IEEE Int. Conf. Comput. Vis., pp. 2651–2658.

[68]. Y.-L. Boureau, J. Ponce, and Y. LeCun (2010). ‘A theoretical analysis of feature pooling in visual recognition’. In Proc. Int. Conf. Mach. Learn., , pp. 111–118. [69]. P. Yang, Q. Liu, and D. N. Metaxas (2009). ‘Boosting encoded dynamic features

for facial expression recognition’. Pattern Recognit. Lett., vol. 30, no. 2, pp. 132– 139.

[70]. G. Zhao and M. Pietikcainen1 (2009). ‘Boosted multi-resolution spatiotemporal descriptors for facial expression recognition’. Pattern Recognit. Lett., vol. 30, no. 12, pp. 1117–1127.

[71]. J. Friedman, T. Hastie, and R. Tibshirani (2000). ‘Additive logistic regression: A statistical view of boosting’. Ann. Statist., vol. 28, no. 2, pp. 337–407.

[72]. H. Yu, J. Yang (2001). A direct LDA algorithms for highdimensional data with application to face recognition, Pattern Recognition 34, pp. 2067 – 2070.

[73]. J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos (2003). Face recognition using LDA-based algorithms, IEEE Trans. Neural Networks 14 (1), pp. 195 – 200. [74]. L.-F. Chen, H.-Y.M. Liao, M.-T. Ko, J.-C. Lin, G.-J. Yu (2000). A new LDA-

based face recognition system which can solve the small sample size problem, Pattern Recognition 33, pp. 1713 – 1726.

[75]. H. Cevikalp, M. Neamtu, M. Wilkes, A. Barkana (2005). Discriminative common vectors for face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 27 (1) , pp. 4 -13.

[76]. J. Yang, D. Zhang, A.F. Frangi, A.F., Yang (2004). Two-dimensional PCA: A new approach to appearance-based face representation and recognition, IEEE Trans. Pattern Anal. Machine Intell. 26 (1), pp. 131-137.

64

[77]. J. Yang, J.Y. Yang (2002). From image vector to matrix: A straightforward image projection technique – IMPCA vs. PCA, Pattern Recognition 35 (9), pp. 1997 – 1999.

[78]. Ming Li, Baozong Yuan (2005). 2D-LDA: A statistical linear discriminant analysis for image matrix, Pattern Recognition Letters 26, pp. 527 – 532.

[79]. D. Zhang, Z.H. Zhou (2005). (2D)2PCA: two-directional two dimensional PCA for efficient face representation and recognition, Neurocomputing 69 (1-3), pp. 224 – 231.

[80]. S. Noushath, G. Hemantha Kumar, P. Shivakumara (2006). (2D)2LDA: An efficient approach for face recognition, Pattern Recognition 39 (7) 1396 – 1400. [81]. T. Ojala, M. Pietika¨inen, and D. Harwood (1996). ‘A Comparative Study of

Texture Measures with Classification Based on Feature Distributions’. Pattern Recognition, vol. 29, no. 1, pp. 51-59.

[82]. T. Ojala, M. Pietika¨inen, and T. Ma¨enpa¨a¨ (2002). ‘Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns’. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987. [83]. H. Jin, Q. Liu, and H. Lu (2004). ‘Face Detection Using Improved LBP Under

Bayesian Framework’. IEEE Conference Publications. Image and Graphics (ICIG'04), Third International Conference on, pp. 306-309.

[84]. X. Y. Tan, and Bill Triggs (2007). ‘Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions’. LNCS, vol. 4778, pp. 168–182. [85]. L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth (2012). ‘Extended local

binary patterns for texture classification’. Image and Vision Computing, vol. 30,

no. 2, pp. 86–99.

[86]. P. Král, A. Vrba (2017). Enhanced local binary patterns for automatic face recognition. Computer Vision and Pattern Recognition, arXiv:1702.03349, ICIP.

Một phần của tài liệu Đề tài kỹ thuật định danh khuôn mặt dựa vào mẫu nhị phân (Trang 71 - 80)

Tải bản đầy đủ (PDF)

(80 trang)