BÀI TẬP TỰ LUẬN.

Một phần của tài liệu De cuong on thi hoc ky 2 Toan 10 Nguyen Quoc Hiep File word (Trang 27 - 28)

Câu 1. Lập phương trình tham số và tổng quát của đường thẳng (Δ) biết: a)   qua M2; 3  và có vecto pháp tuyến rn1; 3 

b)   qua N1;3 và có vecto chỉ phương ur   3; 4

Câu 2. Lập phương trình tổng quát của đường thẳng (Δ) trong các trường hợp sau: a)   qua M2;3 và có hệ số góc k 2

b)   qua N 2; 5 và song song với đường thẳng 2x3y20170 c)   qua N 2; 5 và vuông góc với đường thẳng 4x3y20170

Câu 3. Cho ba điểm A     2;0 ,B 4;1 ,C 1; 2 lập thành ba đỉnh của tam giác. a) Viết phương trình tham số của đường thẳng AB

b) Viết phương trình tổng quát của đường thẳng BC

c) Viết phương trình đường trung tuyến AM của tam giác

d) Viết phương trình tổng quát của các đường cao AH, BH từ đó tìm tọa độ trực tâm của tam giác

e) Viết phương trình tổng quát đường trung bình MN của tam giác ABC với M là trung điểm của AB, N là trung điểm của AC.

f) Viết phương trình đường trung trực của cạnh AB, AC từ đó tìm tọa độ tâm đường tròn ngoại tiếp tam giác

ABC

g) Tính khoảng cách từ C đến đường thẳng AB

h) Tính góc B của tam giác ABC

Câu 4. Trong mặt phẳng tọa độ Oxy cho ΔABC có đỉnh A 1; 2 , đường trung tuyến BM: 2x  y 1 0 và phân giác trong CD x:   y 1 0. Viết phương trình đường thẳng BC

Câu 5. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB x:   y 2 0, phương trình cạnh AC x: 2y 5 0. Biết trọng tâm của tam giác G 3; 2 . Viết phương trình cạnh BC.

Câu 6. Cho tam giác ABC có phương trình cạnh BC là 2x  y 5 0 các đường trung tuyến BMCN lần lượt có phương trình 3x  y 7 0 và x  y 5 0. Viết phương trình đường thẳng chứa các cạnh AB, AC?

Câu 7. Trong mặt phẳng chứa Oxy, cho tam giác ABCAB: 3x5y330; đường cao : 7 13 0

AH x  y ; trung tuyến BM x: 6y240 (M là trung điểm AC). Tìm phương trình các đường thẳng ACBC.

Một phần của tài liệu De cuong on thi hoc ky 2 Toan 10 Nguyen Quoc Hiep File word (Trang 27 - 28)

Tải bản đầy đủ (PDF)

(37 trang)