LƯỚI VỚI ALCHEMI
4.1Bài toán tính số PI
Công thức Bellard:
Công thức Bellard là công thức được chỉnh sửa từ công thức Bailey-Borwein- Plouffe. Công thức này được dùng để tính ra chữ số thứ n trong số Pi theo hệ nhị phân. Nó nhanh hơn 43% so với công thức Bailey-Borwein-Plouffe. Công thức này được sử dụng trong dự án tính toán phân tán PiHex. Công thức được khám phá bởi Fabrice Bellard vào năm 1997. Công thức
4.2Cài đặt chương trình tính toán lưới với thread// create a new grid application // create a new grid application
App = new GApplication (gc);
// add the module containing PiCalcGridThread to the application manifest
App.Manifest.Add(new
ModuleDependency(typeof(PiCalculator.PiCalcGridThread ).Mo dule));
Hai hàm hoàn tất xử lý
ThreadFinished(GThread thread)// executor kết thúc
ApplicationFinished() // tổng hợp lại kết quả các jobs
4.3Kết quả thử nghiệm: Máy PC: CPU G1630 2.8Ghz Máy PC: CPU G1630 2.8Ghz SL chữ số PI 500 1000 1500 2000 3000 Tuần tự 2 15 50 115 373 Grid, 2 máy 3 13 40 94 304 Grid, 3 máy 2 8 32 83 260
Hình 10: đồ thị so sánh hiệu năng tính toán có sử dụng lưới.
4.4Đánh giá, nhận xét
Alchemi rất dễ triển khai và được sử dụng cho các mạng LAN, WAN.
Alchemi hỗ trợ API trên nền .NET dễ xây dựng chương trình.
Hỗ cải thiện tốc độ cho các thuật toán tính toán độc lập, song song hóa.
Phụ thuộc vào executor
4.5Một số dự án sử dụng Alchemi framework trên thế giới
Tier Technologies, USA
Large scale document processing using Alchemi framework
CSIRO, Australia
Natural Resource Modelling
stochastix GmbH, Germany
Asynchronous Excel Tasks using ManagedXLL and Alchemi .Net Grid Computing framework.
The Friedrich Miescher Institute (FMI) for Biomedical Research, Switzerland
Patterns of transcription factors in mammalian genes
Correlation Systems Ltd. , Israel
FoxFix, HF Location
Satyam Computers Applied Research Laboratory, India