Dòng chảy lũ là dòng không ổn định tuân theo hệ phương trình cơ bản sau (hệ Saint –Venant): - - Phương trình liên tục: 3) Phương trình momen: Q Q K2 (3- (3-4)
Trong đó: Q: lưu lượng
x: khoảng cách
Zo: Cao trình đáy sông
h: Độ sâu dòng chảy
V: Vận tốc dòng chảy
K: Môđun lưu lượng.
Đối với dòng chảy lũ vào kho nước, chúng ta thấy có những đặc điểm sau đây: mặt cắt mở rộng đột ngột, độ dốc mặt nước thường rất nhỏ, độ sâu dòng chảy thường rất lớn và tốc độ dòng chảy cũng rất nhỏ. Nên ta có thể đưa phương trình liên tục (3-1) về dạng vi phân sau:
Q.dt – q.dt = F.dh (3-5)
Trong đó: Q: là lưu lượng đến kho nước
q : là lưu lượng ra khỏi kho nước dt: Vi phân thời gian
F: Diện tích mặt thoáng của kho nước
dh: Vi phân của cột nước trên công trình xả lũ.
F.dh: sự thay đồi của phần diện tích điều tiết lũ của kho nước trong khoảng thời gian dt.
Từ phương trình chung đó, với đặc điểm của hồ chứa (độ dốc i =0, v =0) cho nên phương trình (3 -5) được phép viết thành:
(Q - q).dt = dV (3-6).
Từ phương trình trên ta biểu thị lượng nước đến và nước xả lũ là bình quân thời đoạn ∆t tức là sai phân hóa (3-6) ta có:
(Q+q).∆t= ±∆V
Trong đó:
Q, q : Lưu lượng lũ đến và xả lũ bình quân trong thời đoạn tính toán vài giờ, ngày,..)
±∆V : sự thay đổi phần dung tích cắt chứa lũ.Phương trình (3-7) có thể được viết dưới dạng khác:
(
(3-7)
∆t ( giờ,
(3 -8) Trong đó: Q1, Q2:là lưu lượng đến ở đầu và cuối thời đoạn ∆t.
q1, q2 :là lưu lượng xả tương ứng
V1, V2 :là lượng nước có trong kho ở đầu và cuối thời đoạn ∆t.
Nhận xét: Phương trình trên còn hai đại lượng chưa biết là lưu lượng xả và
dung tích hồ ở cuối thời đoạn tính toán: q2 và V2 .Do đó phương trình trên chưa thể giải được. Muốn giải phương trình trên ta cần thêm phương trình thủy lực của công trình xả lũ với dạng tổng quát : q = f(Zt,Zh,C).
C: là tham số biểu thị công trình.
Như vậy nguyên lý cơ bản của điều tiết lũ bằng kho nước là việc hợp giải phương trình cân bằng nước và phương trình thuỷ lực.