Hệ thống K
4.3.4 Công cụ ANFIS để thiết kế hệ mờ nơron 1 Khái niệm
4.3.4.1 Khái niệm
Cấu trúc cơ bản của hệ thống suy luận mờ như chúng ta đã thấy là mô hình thực hiện sự ánh xạ các thuộc tính vào đến các hàm liên thuộc vào, hàm liên thuộc vào đến các luật, các luật đến tập các thuộc tính ra, các thuộc tính ra đến hàm liên thuộc ra và hàm liên thuộc ra đến giá trị ra đơn trị hoặc quyết định kết hợp với đầu ra. Chúng ta mới chỉ đề cập đến các hàm liên thuộc được bố trí trước và ở mức độ nào đó việc chọn còn tuỳ tiện. Đồng thời chúng ta cũng mới chỉ áp dụng các suy diễn mờ để mô hình hoá hệ thống mà cấu trúc luật về cơ bản được định trước bằng việc sử dụng sự thể hiện của thuộc tính của các biến trong mô hình.
Giả thiết ta muốn áp dụng suy diễn mờ cho hệ thống mà đối với nó ta đã có một tập dữ liệu vào/ra, ta có thể sử dụng để mô hình hoá, mô hình sắp tới hoặc một vài phương pháp tương tự. Không nhất thiết phải có cấu trúc mô hình định trước làm cơ sở cho thuộc tính của các biến trong hệ thống. Có một vài mô hình trạng thái trên nó chúng ta không thể nhận thấy dữ liệu và không thể hình dung được hình dạng của hàm liên thuộc. Đúng hơn là việc chọn các thông số liên kết với các hàm liên thuộc định sẵn là tuỳ tiện, các thông số này được chọn sao cho làm biến đổi tập dữ liệu vào/ra đến bậc được miêu tả cho dạng đó của các biến trong các giá trị dữ liệu. Do đó được gọi là kỹ thuật học neuro-Adaptive hợp thành Anfis.
Ý tưởng cơ bản của kỹ thuật học neuro-adaptive rất đơn giản. Kỹ thuật này đưa ra cơ chế cho mô hình mờ có thủ tục để học thông tin về tập dữ liệu theo thứ tự ước tính các tham số của hàm liên thuộc mà nó cho phép kết hợp với hệ thống suy diễn mờ theo hướng dữ liệu vào/ra nhất định. Phương pháp học này làm việc tương tự như mạng nơron. Bộ công cụ logic mờ dùng để thực hiện việc điều chỉnh tham số của hàm liên thuộc được gọi là anfis (adaptive neuro-fuzzy inference system) sử dụng tập dữ liệu vào/ra có sẵn, hàm anfis xây dựng nên hệ thống suy
39
diễn mờ (FIS), các thông số hàm liên thuộc của nó được điều chỉnh nhờ sử dụng các thuật toán huấn luyện của mạng nơron như thuật toán lan truyền ngược hoặc kết hợp lan truyền với phương pháp bình phương cực tiểu. Điều đó cho phép hệ mờ của ta "học" từ tập dữ liệu chúng được mô hình.