Mối tƣơng quan về xu hƣớng diễn biến của giá trị dự báo sử dụng FFNN với các số nơ-ron khác nhau và giá trị đo của PM10 đƣợc thể hiện trong Hình 3.5 đến Hình 3.8.
40 Với số nơ-ron lớp ẩn là 02
Hình 3.5. Tƣơng quan với giá trị đo của kết quả dự báo bằng mô hình FFNN (1-2-1) đối với PM10
Trong đó: Pi: diễn biến nồng độ SO2 dự báo từ mô hình FFNN; Oi: giá trị đo
Với số nơ-ron lớp ẩn là 05
Hình 3.6. Tƣơng quan với giá trị đo của kết quả dự báo bằng mô hình FFNN (1-5-1) đối với PM10
41 Với số nơ-ron lớp ẩn là 10
Hình 3.7. Tƣơng quan với giá trị đo của kết quả dự báo bằng mô hình FFNN (1-10- 1) đối với PM10
Trong đó: Pi: diễn biến nồng độ SO2 dự báo từ mô hình FFNN; Oi: giá trị đo Với số nơ-ron lớp ẩn là 20
Hình 3.8. Tƣơng quan với giá trị đo của kết quả dự báo bằng mô hình FFNN (1-20- 1) đối với PM10
42
Hình 3.5 đến Hình 3.8 cho thấy, cũng giống nhƣ SO2, sự tƣơng quan diễn biến nồng độ dự báo PM10 và nồng độ đo có sự tƣơng quan tốt. Hơn nữa, kết quả này còn có phần tốt hơn so với SO2.Từ những kết quả này, có thể bƣớc đầu khẳng định, FFNN là một công cụ tiềm năng để dự báo diễn biến nồng độ theo thời gian. Điều này sẽ có ý nghĩa trong việc quản lý chất lƣợng không khí và dự báo các tình huống xấu có thể sảy ra để xây dựng các kịch bản ứng phó cần thiết. Để đánh giá mức độ tƣơng quan cụ thể thì cần xác định độ tin cậy của mô hình.