Chỉnh hợp khụng lặp

Một phần của tài liệu bài giảng toán rời rạc Combin01 counting (Trang 30 - 32)

Định nghĩa. Ta gọi chỉnh hợp khụng lặp chập m từ n phần tử của X là bộ cú thứ tự gồm m thành phần, mỗi thành phần đều là phần tử của X, cỏc thành phần khỏc nhau từng đụi.

Ký hiệu số lượng chỉnh hợp khụng lặp chập m từ n phần tử là Pnm. Rừ ràng, để tồn tại chỉnh hợp khụng lặp, thỡ m n.

Theo định nghĩa, một chỉnh hợp khụng lặp chập m từ n phần tử của X cú thể biểu diễn bởi

(a1, a2, ..., am), ai X, i = 1, 2, ..., m, ai aj, i j.

Việc đếm số lượng chỉnh hợp khụng lặp chập m từ n phần tử cú thể thực hiện theo nguyờn lý nhõn. Ta cú

Định lý 2. ! ( 1)...( 1) ( )! m n n P n n n m n m = − − + = −

Chỉnh hợp khụng lặp

Ví dụ 1. Tính số đơn ánh từ tập m phần tử U = {u1, u2, ..., um} vào tập n phần tử V.

Giải: Mỗi đơn ánh f cần đếm đ ợc xác định bởi bộ ảnh (f(u1), f(u2), ..., f(um)), trong đó f(ui) V, i=1, 2, ..., m, f(ui) f(uj), i j. Từ đó nhận đ ợc số cần tìm là n(n-1)...(n-m+1).

Vớ dụ 2. Cú bao nhiờu cỏch xếp 4 học sinh vào ngồi sau một cỏi bàn cú 10 chỗ ngồi với điều kiện khụng được phộp ngồi lũng.

Giải. Đỏnh số cỏc học sinh từ 1 đến 4, cỏc chỗ ngồi từ 1 đến 10. Mỗi cỏch xếp học sinh cần đếm cú thể biểu diễn bởi bộ cú thứ tự (g1, g2, g3, g4), trong đú gi {1, 2, ..., 10} là chỗ ngồi của học sinh i. Từ điều kiện đầu bài gi gj, i j; do đú mỗi cỏch xếp cần đếm là một chỉnh hợp khụng lặp chập 4 từ 10. Vậy số cỏch xếp cần đếm là P104 = 10.9.8.7 = 5040.

Chỉnh hợp khụng lặp

Chỳ ý: Để giải vớ dụ 2 cú thể lập luận trực tiếp theo nguyờn lý nhõn: theo nguyờn lý nhõn:

Một phần của tài liệu bài giảng toán rời rạc Combin01 counting (Trang 30 - 32)

Tải bản đầy đủ (PPT)

(178 trang)