Idn tfu? 48 tai ltEtNann

Một phần của tài liệu giáo trình một số điểm cần lưu ý khi dạy học đại số và giải tích 11 nâng cao (Trang 33)

. Trudng hop 1 k chin L:6c nityA2-Pn

Idn tfu? 48 tai ltEtNann

f, tuo tin t0 6ng Nguy6n Khdc Minh, Trudng

I Bon rhu kr tMO 2007, tMO 2002 rqi ViQr

E Nom do BQ Gi6o duc vd Ddo too chO rri,

phdt hqp v6i HQi To6n hocVi6t Nom, ViCn t*n hoc - Vi6n Khoo hoc vd C6ng ngh6 Vi6t Nom,

trudng Doi hoc Khoo hoc tu nhi6n - Doi hoc Qudc

gio Hd N6i, td ch0c, s6 di6n ro t0 ngdy 19 .7 .2007

ddn3l .7.2007.

Ddn ngdy 1A.7.2A07 d6 c6 95 qudc gio vd v0ng

lanh rhd hodn 16rvi6c dang kf nhan su c0 rhom du IMO 2007 . Theo d6, hi6n c6 527 hgcsinh vd 266

cdn bE da chrnh thoc dang kf rhom dq ki rhi.

Ngdy 24.7.2007 L6 Khoi moc s6 di6n ro roi Trung tdm HQi nghi Qudc gio M| Dnh. Hoc sinh

s6 thi trong hoi ngdy 25 vd 26.7.2007. Ngdy

307.2@7 s6 di6n ro L6 Bd moc vd troo gi6i ioi

Trung t6m H6i ngh! Qudc gio M!Dnh. Trong hoi ngdy 27 vd 28.7, hocsinh duoc di thom quon, du

llch toi tinh Qu6ng Nlinh vd tinh Hd T6y; kong thdi gion ndy, c6c Tru6ng, Ph6 tru6ng dodn s6 cung Bon rd ch0c IMO 2007 tidn hdnh chdm thi.

Hi6n Bon td ch0c IMO 2002 da tuydn chon duo. c

gdn 60 c6n b6, sinh vi6n hign dong c6ng t6c vd hgc tqp toi cdc trudng Doi hoc, Vien Todn hoc,

tqp chi Todn hoc vd Tudi tr6, c6c frudng THff

chuyGn vd ndng khidu trong c6 nu6c thom gio

Bon chdm thi IMO 2A07. C6c c6n b6 vd sinh vi6n

ndy dd tr6i quo hoi dot t6p hudn vd c6ng t6c

chdm thi bdng tidng nu6c ngodi toi Vi6n To6n

hoc. CUng v6i lu. c luong ndy, s6 c6 gdn 30 c6n

b6, sinh vi6n nh0ng ngudi d6 t&ng dot gi6i tgi

cdc IMO hign dong c6ng t6c vd hoc tQp tgi nu6c ngodi sE v6 thom gio chdm thi.

Dd bidt th6m c6c th6ng rin chi ti6t li6n quon ddn IMO 20A7, bon doc c6 thdxem tr6n trong tin

dian ffi (websire) chinh th0c cOo Bon td chOc IMO 20OZ (h ttp: / / www.i mo2O07.eduvn).

VU NGUYEN

PROBLEMS... (Iii5p ftang t7)

T6136l. Let ABCD be a parallelogram. Let M be a point in the plane spanned by the

parallelogram ABCD such that fri) =frnZ .

Prove that the two triangles MAB and MCD

share a common orthocenter.

T7136l. Let AD, BE, CF be the three

bisectors of atriangle ABC (D e BC, E e CA,

Một phần của tài liệu giáo trình một số điểm cần lưu ý khi dạy học đại số và giải tích 11 nâng cao (Trang 33)

Tải bản đầy đủ (PDF)

(36 trang)