Môi trường thực nghiệm

Một phần của tài liệu Áp dụng giải thuật di truyền giải bài toán người du lịch (Trang 39)

Chương trình được viết bằng ngôn ngữ Java, được dịch trên công cụ Eclipse, chạy trên hệ điều hành Windows 7 64 bit. Các thông số phần cứng: CPU Intel® Core™ i5 2.53 GHz, bộ nhớ RAM 4GB.

39 4.3. Kết quả thực nghiệm

 So sánh chiến lược chọn lọc: Cài đặt giải thuật sử dụng phép lai PMX và phép đột biến RSM, so sánh kết quả đạt được của hai chiến lược chọn lọc tỷ lệ (bánh xe roulette) và lựa chọn tranh đấu. Điều kiện dừng được sử dụng là 150.000 lần tính hàm thích nghi.

Số thứ tự Tên bộ dữ liệu Lựa chọn tỷ lệ Lựa chọn tranh đấu

1 Wi29 28684.158 27601.17 2 Dj38 7117.8164 6659.439 3 Eil51 451.53052 437.0156 4 Pr76 119712.41 110686.91 5 Rat99 1520.1378 1230.256 6 KroA100 27439.74 22663.928 7 Bier127 144248.72 124913.445 8 Ch150 10399.811 7104.476 9 Tsp225 7875.6353 4209.03

Bảng 3: Kết quả tốt nhất đạt được sử dụng chiến lược chọn lọc tỷ lệ và tranh đấu

Hình 13: So sánh kết quả tốt nhất đạt được sử dụng chiến lược chọn lọc tỷ lệ và tranh đấu của các bộ dữ liệu có kết quả thu được trong khoảng từ 50.000 – 200.000

40

Hình 14: So sánh kết quả tốt nhất đạt được sử dụng chiến lược chọn lọc tỷ lệ và tranh đấu của các bộ dữ liệu có kết quả thu được trong khoảng từ 5.000 – 50.000

Hình 15:So sánh kết quả tốt nhất đạt được sử dụng chiến lược chọn lọc tỷ lệ và tranh đấu của các bộ dữ liệu có kết quả thu được trong khoảng từ 0 – 5.000

Dựa trên kết quả thu được ở bảng 3 và các biểu đồ ở hình 13, 14 và 15, rất dễ nhận ra rằng chiến lược chọn lọc tranh đấu được sử dụng khi lựa chọn cặp cha - mẹ để tiến hành lai ghép đưa ra kết quả tốt hơn so với chiến lược chọn lọc tỷ lệ. Đối với những bộ dữ liệu có số lượng đỉnh (thành phố) nhỏ, sự chênh lệch giữa các kết quả tốt nhất đạt được không lớn. Khi số lượng đỉnh tăng lên, sự chênh lệch này sẽ trở lên lớn hơn. Khi sử dụng chiến lược chọn lọc tranh đấu, cha mẹ tốt nhất sẽ được chọn trong một số các cá thể được chọn ngẫu nhiên. Vì vậy, khả năng đưa ra lời giải

41 cha mẹ tốt hơn và đa dạng hơn để cải thiện các thế hệ sau sẽ cao hơn khi sử dụng chiến lược chọn lọc tỷ lệ (chỉ so sánh hai NST i-1 và i)

 So sánh hiệu quả đạt được khi sử dụng chiến lược chọn lọc tranh đấu và áp dụng cùng với các phép lai khác nhau

Số thứ tự Tên bộ dữ liệu OX PMX MSCX 1 Wi29 27601.17 27601.17 27601.17 2 Dj38 6659.439 6659.439 6659.439 3 Eil51 436.05557 437.0156 428.9816 4 Pr76 110564.516 110686.91 109366.24 5 Rat99 1237.824 1230.256 1246.3992 6 KroA100 22027.453 22663.928 21496.332 7 Bier127 121829.88 124913.445 120412.36 8 Ch150 6948.237 7104.476 6656.437 9 Tsp225 4166.7095 4209.03 4090.7095 10 Gil262 2530.249 2722.378 2516.8599 11 Rat575 7831.414 8026.3975 7699.8 12 Pr1002 - 373007.16 304006.1

Bảng 4: Kết quả tốt nhất đạt được khi sử dụng các phép lai OX, PMX và MSCX

Hình 16: So sánh kết quả tốt nhất đạt được khi sử dụng phép lai OX, PMX và MSCX của các bộ dữ liệu có kết quả thu được trong khoảng từ 5000 – 50.000

0 10000 20000 30000

Wi29 Dj38 KroA100 Ch150 Rat575

Chi phí Bộ dữ liệu OX PMX MSCX Optimal

42

Hình 17: So sánh kết quả tốt nhất đạt được khi sử dụng phép lai OX, PMX và MSCX của các bộ dữ liệu có kết quả thu được trong khoảng từ 50.000 – 500.000

Hình 18: So sánh kết quả tốt nhất đạt được khi sử dụng phép lai OX, PMX và MSCX của các bộ dữ liệu có kết quả thu được trong khoảng từ 0 – 5000

Dựa theo thống kê và biểu đồ so sánh các kết quả ở bên trên, rất dễ dàng để nhận ra rằng ở các bộ dữ liệu có số đỉnh nhỏ, kết quả tốt nhất đạt được đều gần bằng nhau và gần với kết quả tốt nhất. Khi số đỉnh tăng dần, sự chênh lệch giữa các kết quả tốt nhất đạt được cũng tăng dần. Vì vậy, có thể kết luận rằng việc cài đặt giải

43 thuật di truyền sử dụng phép lai MSCX đưa ra kết quả tốt hơn nhiều so với hai phép lai OX và PMX thường được biết đến, đặc biệt là đối với các bộ dữ liệu lớn.

Bên cạnh việc so sánh kết quả tốt nhất được đưa ra sau các lần chạy thực nghiệm, luận văn còn phân tích các kết quả tốt nhất được đưa ra trong từng thế hệ, so sánh sự hội tụ khi sử dụng các phép lai OX, PMX và MSCX.

Hình 19:So sánh kết quả tốt nhất đạt được khi sử dụng phép lai OX, PMX và MSCX qua từng thế hệ (xét 500 thế hệ đầu) của bộ dữ liệu wi29

Hình 20:So sánh kết quả tốt nhất đạt được khi sử dụng phép lai OX, PMX và

44

Hình 21: So sánh kết quả tốt nhất đạt được khi sử dụng phép lai PMX và MSCX qua từng thế hệ (xét 50.000 thế hệ đầu) của bộ dữ liệu pr1002

Sự hội tụ của kết quả tốt nhất thu được qua từng thế hệ khi sử dụng phép lai MSCX tốt hơn PMX và OX ở bộ dữ liệu nhỏ (wi29), bộ dữ liệu vừa (gil262) và bộ dữ liệu lớn (pr1002) do phương thức hoạt động của MSCX dựa trên ma trận khoảng cách (ma trận chi phí).

4.4. Kết luận

Qua quá trình nghiên cứu và chạy thử nghiệm nhiều lần trên máy tính, giải thuật di truyền có thể giải quyết bài toán người du lịch với các bộ dữ liệu có số lượng thành phố nhỏ trong một thời gian rất ngắn. Khi số lượng các thành phố tăng lên, kết quả tốt nhất đạt được chưa gần với kết quả tối ưu thật sự. Để khắc phục, việc tăng số thế hệ (vòng lặp) để hy vọng số thế hệ sau có thể tìm ra một kết quả mới, tốt hơn kết quả trước đó. Giải thuật di truyền sử dụng chọn lọc tranh đấu và phép lai MSCX đạt hiệu quả tốt hơn khi sử dụng với phép lai PMX và OX. Khi sử dụng phép lai MSCX, kết quả hội tụ nhanh hơn qua từng thế hệ.

45 4.5. Hướng phát triển

Với những kiến thức nền tảng về giải thuật di truyền và bài toán người du lịch, trong tương lai, việc nghiên cứu có thể tiếp tục với một số hướng như sau:

- Đề xuất và cài đặt thử nghiệm giải thuật di truyền kết hợp với một số thuật toán khác.

- Đề xuất và cài đặt thử nghiệm các chiến lược chọn lọc cải tiến. - Tiếp tục phát triển ứng dụng cho một số lớp bài toán tối ưu khác.

46

TÀI LIỆU THAM KHẢO

[1]. Applegate, D. L.; Bixby, R. M.; Chvátal, V.; Cook, W. J., The Traveling

Salesman Problem, ISBN 0-691-12993-2, 2006

[2]. Dr.Sabry M. Abdel-Moetty, Asmaa O. Heakil, Enhanced Traveling Salesman Problem Solving using Genetic Algorithm Technique with modified Sequential

Constructive Crossover Operator, International Journal of Computer Science and

Network Security, VOL.12 No.6, June 2012

[3]. Đinh Mạnh Tường, Trí tuệ nhân tạo, NXB Khoa học và kỹ thuật.2002.

[4]. Gutin, G.; Yeo, A.; Zverovich, A, Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP, Discrete Applied

Mathematics 117 (1–3): 81–86, 2002

[5]. Held, M.; Karp, R. M. (1962), A Dynamic Programming Approach to Sequencing Problems, Journal of the Society for Industrial and Applied

Mathematics 10 (1): 196–210

[6]. Hoàng Kiếm, Giải một bài toán trên máy tính như thế nào, NXB Giáo Dục.

[7]. Hornik, Kurt, and Bettina Grün. TSP-Infrastructure for the traveling salesperson problem. Journal of Statistical Software 23.2, pp. 1-21, 2007.

[8]. Ivan Brezina Jr.,ZuzanaCickova, Solving the Travelling Salesman Problem

using the Ant colony Optimization, Management Information Systems, 2011 , Vol.

(6), No. (4).

[9]. Johnson, D. S.; McGeoch, L. A. (1997). The Traveling Salesman Problem: A

Case Study in Local Optimization (PDF). In Aarts, E. H. L.; Lenstra, J. K. Local

Search in Combinatorial Optimisation. London: John Wiley and Sons Ltd. pp. 215– 310.

47 [10]. Lawrence V. Snyder a,*, Mark S. Daskin , A random-key genetic algorithm for

the generalized traveling salesman problem, European Journal of Operational

Research 174 (2006) 38–53, 2005.

[11]. Marco Dorigo. Ant Colonies for the Traveling Salesman Problem. IRIDIA,

Université Libre de Bruxelles. IEEE Transactions on Evolutionary Computation, 1(1):53–66. 1997

[12]. Michel Gendreau, Jean-Yves Potvin. Handbook of Metaheuristics, Second

Edition. Springer, pp. 61-70, 2010

[13]. Milena Karova,VassilSmarkov,StoyanPenev, Genetic operators crossover and

mutation in solving the TSP problem, International Conference on Computer

Systems and Technologies - CompSysTech’ 2005.

[14]. Nguyễn Đình Thúc, Trí tuệ nhân tạo: Lập trình tiến hóa, NXB Giáo Dục,

2001.

[15]. Nguyễn Đức Nghĩa - Nguyễn Tô Thành, Toán rời rạc, NXB Đại học Quốc Gia Hà Nội.2003.

[16]. Nguyễn Đức Nghĩa, Phân tích thiết kế thuật toán: Nhập môn NP-đầy đủ, ĐH

Bách Khoa Hà Nội, 2003.

[17]. Nguyễn Thanh Thủy, Công nghệ tri thức và tính toán mềm: Giải thuật di truyền, ĐH Bách Khoa Hà Nội, 2003.

[18]. Nicos Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Graduate School of Industrial Administration, CMU, 1976.

[19]. Otman ABDOUN, Jaafar ABOUCHABAKA, Chakir TAJANI, Analyzing the

Performance of Mutation Operators to Solve the Travelling Salesman Problem,

LaRIT Laboratory, Faculty of sciences, Ibn Tofail University, Kenitra, Morocco

[20]. Rong Yang, Solving Large Travelling Salesman Problems with Small

48 [21]. S. Lin, B.W. Kernighan. An effective heuristic algorithm for the traveling

salesman problem. Operations Research 21, pp. 498-516, 1973.

[22]. X.H. Shi , Y.C. Liang, H.P. Lee, C. Lu, Q.X. Wang, Particle swarm

optimization-based algorithms for TSP and generalized TSP, Information

Processing Letters 1 03 (2007) 169–176,2007.

[23]. Zakir H. Ahmed, Genetic Algorithm for the Traveling Salesman Problem

using Sequential Constructive Crossover Operator, International Journal of

Một phần của tài liệu Áp dụng giải thuật di truyền giải bài toán người du lịch (Trang 39)

Tải bản đầy đủ (PDF)

(49 trang)