1.1.3.1 Kênh logic
Kênh điều khiển quảng bá (Broadcast Control Channel - BCCH): được sử dụng cho việc truyền dẫn thông tin điều khiển hệ thống từ mạng tới tất cả các thiết bị đầu cuối di động trong một tế bào. Trước khi truy nhập vào hệ thống, một thiết bị đầu cuối di động cần phải đọc những thông tin được truyền trên kênh BCCH để tìm ra cách thức hệ thống được cấu hình, ví dụ như băng thông của hệ thống.
Kênh điều khiển tìm gọi (Paging Control Channel – PCCH): được sử dụng cho việc tìm gọi các thiết bị đầu cuối di động mà mạng không biết được vị trí của nó về mức tế bào (cell level) và vì vậy tin nhắn tìm gọi cần được truyền trong nhiều tế bào.
Kênh điều khiển dành riêng (Dedicated Control Channel – DCCH): được dùng cho việc truyền dẫn thông tin điều khiển tới hoặc từ thiết bị đầu cuối di động. Kênh này được sử dụng cho việc cấu hình riêng lẻ từng thiết bị đầu cuối di động ví dụ như những tin nhắn chuyển giao khác nhau.
Kênh điều khiển multicast (Multicast Control Channel - MCCH): được dùng cho việc truyền dẫn thông tin điều khiển được yêu cầu cho việc tiếp nhận của MTCH, xem phần dưới đây.
Kênh lưu lượng dành riêng (Dedicated Traffic Channel - DTCH): được dùng cho việc truyền dữ liệu người dùng đến hoặc từ một thiết bị đầu cuối di động. Đây là một loại kênh logic được dùng để truyền dữ liệu người dùng đường lên và đường xuống phi-MBMS (non-MBMS).
Kênh lưu lượng multicast (Multicast Traffic Channel – MTCH): được dùng cho truyền dẫn đường xuống những dịch vụ MBMS.
Học viên thực hiện: Vũ Huy Cƣờng 29
1.1.3.2 Kênh truyền tải
Kênh quảng bá (Broadcast Channel - BCH): có một định dạng truyền tải cố định, được cung cấp bởi các đặc tính kỹ thuật. Nó được dùng cho việc truyền dẫn những thông tin trên kênh logic BCCH.
Kênh tìm gọi (Paging channel - PCH): được dùng cho việc tìm gọi thông tin trên kênh logic PCCH. Kênh PCH hỗ trợ việc thu nhận không liên tục (discontinous reception – DRX) nhằm cho phép thiết bị đầu cuối di động tiết kiệm năng lượng pin bằng cách tắt (sleeping) và chỉ bật (wake up) khi nhận PCH tại những thời điểm xác định trước.
Kênh chia sẻ đường xuống (Downlink Shared Channel – DL-SCH): kênh truyền tải được dùng cho truyền dẫn dữ liệu đường xuống trong LTE. Nó hỗ trợ những đặc tính của LTE như cơ chế thích ứng tốc độ động (dynamic rate adaption) và hoạch định phụ thuộc kênh truyền (channel-dependent scheduling) trong miền thời gian và tần số, hybrid ARQ và ghép kênh không gian. Nó cũng hỗ trợ DRX nhằm làm giảm năng lượng tiêu thụ ở thiết bị đầu cuối di động trong khi vẫn cung cấp trải nghiệm luôn mở (always-on experience), tương tự như cơ chế CPC trong HSPA. DL-SCH TTI là 1 ms.
Kênh đa điểm (Multicast Channel - MCH): được dùng để hỗ trợ MBMS và được đặc trưng bởi định dạng truyền tải bán tĩnh và hoạch định bán tĩnh (semi-static transport format and semi-static scheduling). Trong trường hợp truyền dẫn nhiều tế bào (multi-cell transmission) sử dụng MBSFN, cấu hình định dạng truyền tải và hoạch định được điều phối giữa những tế bào liên quan trong truyền dẫn MBSFN.
Kênh chia sẻ đường lên (Uplink Shared Channel – UL-SCH): đường lên tương ứng với DL-SCH.
1.1.3.4 Kênh vật lý
Kênh chia sẻ đường xuống vật lý (Physical Downlink Shared Channel - PDSCH): mang thông tin nhắn tìm, thông tin điều khiển chung và riêng, và dữ liệu lưu
Học viên thực hiện: Vũ Huy Cƣờng 30 lượng cho người sử dụng. Nó cũng có thể được sử dụng để mang thông tin điều khiển broadcast và multicast.
Kênh chia sẻ đường lên vật lý (Physical Uplink Shared Channel - PUSCH): PUSCH được dùng để mang dữ liệu người dùng. Các tài nguyên cho PUSCH được chỉ định trên một subframe cơ bản bởi việc lập biểu đường lên. Các sóng mang được chỉ định là 12 khối tài nguyên (RB) và có thể nhảy từ subframe này đến subframe khác. PUSCH có thể dùng các kiểu điều chế QPSK, 16QAM, 64QAM.
Kênh điều khiển đường lên vật lý (Physical Uplink Control Channel - PUCCH): mang thông tin điều khiển hướng lên (UCI), tức là thông tin ACK/NACK liên quan tới việc nhận các gói dữ liệu trong đường xuống, báo cáo chỉ thị chất lượng kênh (CQI), thông tin ma trận tiền mã hóa (PMI) và chỉ thị bậc (RI) cho MIMO và các yêu cầu lập kế hoạch. PUCCH được truyền trên một vùng tần số dành riêng trong hướng lên mà nó được cấu hình bởi các lớp cao hơn. Các khối tài nguyên PUCCH được đặt vào cả hai biên của băng thông đường lên và nhảy tần liên khe được sử dụng trên PUCCH.
Kênh điều khiển đường xuống vật lý (Physical Downlink Control Channel - PDCCH): nó phục vụ cho nhiều mục đích. Chủ yếu nó được sử dụng để chuyển các quyết định lập lịch biểu tới các UE riêng lẻ, tức là nó có nhiệm vụ lập lịch biểu cho hướng lên và hướng xuống.
Kênh quảng bá vật lý (Physical Broadcast Channel - PBCH): mang các thông tin hệ thống cần thiết cho việc truy nhập hệ thống, như là các thông số RACH. Kênh này luôn được cung cấp với băng thông 1.08MHz. Vì vậy, cấu trúc PBCH là độc lập với băng thông thực tế của hệ thống được sử dụng. Thông tin quảng bá là một phần được mang trên PBCH, nơi mà khối thông tin chính được truyền đi trong khi các khối thông tin hệ thống thực sau đó được truyền trên PDSCH.
Kênh multicast vật lý (Physical Multicast Channel - PMCH): mang thông tin multicast.
Kênh truy cập ngẫu nhiên vật lý (Physical Random Access Channel - PRACH): mang các yêu cầu truy cập ngẫu nhiên từ người sử dụng.
Học viên thực hiện: Vũ Huy Cƣờng 31 Hình 1.8: Kênh logic, kênh truyền tải và kênh vật lý LTE
1.2 KỸ THUẬT TRUY NHẬP VÔ TUYẾN TRONG MẠNG LTE
LTE sử dụng kỹ thuật OFDMA cho truy cập đường xuống và SC-FDMA cho truy cập đường lên, kết hợp đồng thời với MIMO.
1.2.1 Kỹ thuật OFDMA
Hình 1.9 Truyền đơn sóng mang
Học viên thực hiện: Vũ Huy Cƣờng 32 Hình 1.11 Nguyên lý đa sóng mang
Kỹ thuật điều chế OFDM, về cơ bản là một trường hợp đặc biệt của phương pháp điều chế FDM, chia luồng dữ liệu thành nhiều đường truyền băng hẹp trong vùng tần số sử dụng, trong đó các sóng mang con (hay sóng mang phụ, sub-carrier) trực giao với nhau. Do vậy, phổ tín hiệu của các sóng mang phụ này được phép chồng lấn lên nhau mà phía đầu thu vẫn khôi phục lại được tín hiệu ban đầu. Sự chồng lấn phổ tín hiệu này làm cho hệ thống OFDM có hiệu suất sử dụng phổ lớn hơn nhiều so với các kĩ thuật điều chế thông thường.
Học viên thực hiện: Vũ Huy Cƣờng 33 Hình 1.13 Tần số - thời gian của tín hiệu OFDM
LTE sử dụng OFDM trong kỹ thuật truy cập đường xuống vì nó có các ưu điểm sau:
OFDM có thể loại bỏ hiện tượng nhiễu xuyên kí hiệu ISI (Inter-Symbol Interference) nếu độ dài chuỗi bảo vệ (Guard Interval) lớn hơn độ trễ truyền dẫn lớn nhất của kênh truyền.
Thực hiện việc chuyển đổi chuỗi dữ liệu từ nối tiếp sang song song nên thời gian symbol tăng lên do đó sự phân tán theo thời gian gây bởi trải trễ do truyền dẫn đa đường giảm xuống.
Tối ưu hiệu quả phổ tần do cho phép chồng phổ giữa các sóng mang con. Hạn chế được ảnh hưởng của fading bằng cách chia kênh fading chọn lọc tần số thành các kênh con phẳng tương ứng với các tần số sóng mang OFDM khác nhau.
OFDM phù hợp cho việc thiết kế hệ thống truyền dẫn băng rộng (hệ thống có tốc độ truyền dẫn cao), ảnh hưởng của sự phân tập về tần số (frequency selectivity) đối với chất lượng hệ thống được giảm thiểu nhiều so với hệ thống truyền dẫn đơn sóng mang.
Cấu trúc máy thu đơn giản.
Thích ứng đường truyền và lập biểu trong miền tần số. Tương thích với các bộ thu và các anten tiên tiến.
Học viên thực hiện: Vũ Huy Cƣờng 34 Hình 1.14 Các sóng mang trực giao với nhau
Một vấn đề gặp phải ở OFDM trong các hệ thống thông tin di động là cần dịch các tần số tham khảo đối với các đầu cuối phát đồng thời. Dịch tần phá hỏng tính trực giao của các cuộc truyền dẫn đến nhiễu đa truy nhập. Vì vậy nó rất nhạy cảm với dịch tần. Ở LTE chọn khoảng cách giữa các sóng mang là 15KHz, đối với khoảng cách này là khoảng cách đủ lớn đối với dịch tần Doppler.
Để điều chế tín hiệu OFDM sử dụng biến đổi FFT và IFFT cho biến đổi giữa miền thời gian và miền tần số.
Hình 1.15 Biến đổi FFT
Chiều dài biến đổi FFT là 2n với n là số nguyên. Với LTE chiều dài có thể là 512 hoặc 1024...Ta sử dụng biến đổi IFFT khi phát đi, nguồn dữ liệu sau khi điều chế được chuyển đổi từ nối tiếp sang song song. Sau đó được đưa đến bộ biến đổi IFFT. Mỗi ngõ vào của IFFT tương ứng với từng sóng mang con riêng biệt (thành phần tần số riêng biệt của tín hiệu miền thời gian) và mỗi sóng mang được điều chế độc lập với
Học viên thực hiện: Vũ Huy Cƣờng 35 các sóng mang khác. Sau khi được biến đổi IFFT xong, tín hiệu được chèn thêm tiền tố vòng (CP) và phát đi. Ở bộ thu ta làm ngược lại.
Hình 1.16 Thu phát OFDM
Mục đích của việc chèn thêm tiền tố vòng là có khả năng làm giảm hay loại trừ nhiễu xuyên kí hiệu ISI (Inter Symbol Interference). Một mẫu tín hiệu có độ dài là TS, chuỗi bảo vệ tương ứng là một chuỗi tín hiệu có độ dài TG ở phía sau được sao chép lên phần phía trước của mẫu tín hiệu như hình vẽ sau:
Hình 1.17 Chuỗi bảo vệ GI
Do đó, GI còn được gọi là Cyclic Prefix (CP). Sự sao chép này có tác dụng chống lại nhiễu xuyên kí hiệu ISI do hiệu ứng phân tập đa đường.
Học viên thực hiện: Vũ Huy Cƣờng 36 Nguyên tắc này giải thích như sau: Giả sử máy phát đi một khoảng tín hiệu có chiều dài là Ts, sau khi chèn thêm chuỗi bảo vệ có chiều dài TG thì tín hiệu này có chiều dài là T = TS+TG. Do hiệu ứng đa đường multipath, tín hiệu này sẽ tới máy thu theo nhiều đường khác nhau. Trong hình vẽ, hình a, tín hiệu theo đường thứ nhất không có trễ, các đường thứ hai và thứ ba đều bị trễ một khoảng thời gian so với đường thứ nhất. Tín hiệu thu được ở máy thu sẽ là tổng hợp của tất cả các tuyến, cho thấy kí hiệu đứng trước sẽ chồng lấn vào kí hiệu ngay sau đó, đây chính là hiện tượng ISI.Do trong OFDM có sử dụng chuỗi bảo vệ có độ dài TG sẽ dễ dàng loại bỏ hiện tượng này. Trong trường hợp TG ≥τ MAX như hình vẽ mô tả thì phần bị chồng lấn ISI nằm trong khoảng của chuỗi bảo vệ, còn thành phần tín hiệu có ích vẫn an toàn. Ở phía máy thu sẽ loại bỏ chuỗi bảo vệ trước khi gửi tín hiệu đến bộ giải điều chế OFDM. Do đó, điều kiện cần thiết để cho hệ thống OFDM không bị ảnh hưởng bởi ISI là:
TG ≥τ MAX với τMAX là trễ truyền dẫn tối đa của kênh.
a. Không có GI
b. Có GI
Học viên thực hiện: Vũ Huy Cƣờng 37 OFDM lượng tử hóa trong miền tần số dựa trên ước lượng đáp ứng tần số của kênh. Do đó nó hoạt động đơn giản hơn WCDMA và nó không phụ thuộc vào chiều dài của kênh (chiều dài của đa đường trong các chip) như khi lượng tử WCDMA. Trong WCDMA các cell khác nhau được phân biệt bởi các mã trải phổ khác nhau nhưng trong OFDM trải phổ không có giá trị, nó sử dụng các ký hiệu tham khảo riêng biệt giữa các cell hoặc giữa các anten khác nhau.
LTE sử dụng OFDMA (Orthogonal Frequency Division Multiple Access) cho tuyến lên. OFDMA gọi là Đa truy nhập phân chia theo tần số trực giao là công nghệ đa truy cập phân chia theo sóng mang, là một dạng nâng cao, là phiên bản đa người dùng của mô hình điều chế số OFDM.
Kỹ thuật đa truy nhập của OFDMA cho phép nhiều người dùng cùng truy cập vào một kênh truyền bằng cách phân chia một nhóm các sóng mang con (subcarrier) cho một người dùng tại một thời điểm. Ở các thời điểm khác nhau, nhóm sóng mang con cho 1 người dùng cũng khác nhau. Điều này cho phép truyền dữ liệu tốc độ thấp từ nhiều người sử dụng.
Hình 1.19 Sóng mang con OFDMA
Học viên thực hiện: Vũ Huy Cƣờng 38 Tài nguyên thời gian - tần số được chia nhỏ theo cấu trúc sau: 1 radio frame có chiều dài là 10ms, trong đó chia thành nhiều subframe nhỏ có chiều dài là 1ms, và mỗi subframe nhỏ lại được chia thành 2 slot với chiều dài của mỗi slot là 0.5ms. Mỗi slot sẽ bao gồm 7 ký tự OFDM trong trường hợp chiều dài CP thông thường và 6 ký tự OFDM trong trường hợp CP mở rộng.
Trong OFDMA, việc chỉ định số sóng mang con cho người dùng không dựa vào từng sóng mang con riêng lẻ mà dựa vào các khối tài nguyên (Resource Block). Mỗi khối tài nguyên bao gồm 12 sóng mang con cho khoảng thời gian 1 slot và khoảng cách giữa các sóng mang con là 15KHz dẫn đến kết quả băng thông tối thiểu của nó là 180 KHz. Đơn vị nhỏ nhất của tài nguyên là thành phần tài nguyên (RE), nó bao gồm một sóng mang con đối với khoảng thời gian của một ký tự OFDM. Một RB bao gồm 84 RE (tức 7 x12) trong trường hợp chiều dài CP thông thường và 72 RE (6x12) trong trường hợp chiều dài CP mở rộng.
Hình 1.21 Chỉ định tài nguyên của OFDMA trong LTE
Bảng 1.3 Số khối tài nguyên theo băng thông kênh truyền
Băng thông kênh truyền (MHz)
1.4 3 5 10 15 20
Số khối tài nguyên 6 15 25 50 75 100
Học viên thực hiện: Vũ Huy Cƣờng 39 Hình 1.22 Cấu trúc của một khối tài nguyên
Tín hiệu tham khảo (RS): LTE sử dụng các tín hiệu tham khảo đặc biệt để dễ dàng ước lượng dịch sóng mang, ước lượng kênh truyền, đồng bộ thời gian…Các tín hiệu tham khảo được bố trí như hình sau:
Học viên thực hiện: Vũ Huy Cƣờng 40 Các tín hiệu tham khảo này được phát ở ký tự OFDM thứ nhất và thứ năm của mỗi slot và ở sóng mang thứ sáu của mỗi subframe. Tín hiệu tham khảo cũng được sử dụng để ước lượng tổn hao đường truyền sử dụng công suất thu tín hiệu tham khảo.
Nhược điểm của OFDM là gì? Ta xét các hình sau
Hình 1.24 Đặc tính đường bao của tín hiệu OFDM
Học viên thực hiện: Vũ Huy Cƣờng 41 Từ các hình trên ta thấy, dạng sóng OFDM thể hiện sự thăng giáng đường bao rất lớn dẫn đến PAPR cao. Tín hiệu với PAPR cao đòi hỏi các bộ khuếch đại công suất có tính tuyến tính cao để tránh làm méo dạng tín hiệu. Để đạt được mức độ tuyến tính này, bộ khuếch đại phải làm việc ở chế độ công tác với độ lùi (so với điểm bão hòa cao). Điều này dẫn đến hiệu suất sử dụng công suất (tỷ số công suất phát với công suất tiêu thụ một chiều) thấp vì thế đặc biệt ảnh hưởng đối với các thiết bị cầm tay. Để khắc phục nhược điểm này, 3GPP đã nghiên cứu sử dụng phương pháp đa truy nhập đường lên sử dụng DTFS-OFDM với tên gọi là SC-FDMA và áp dụng cho LTE.
1.2.2 Kỹ thuật SC-FDMA
Các tín hiệu SC-FDMA có tín hiệu PAPR tốt hơn OFDMA. Đây là một trong những lý do chính để chọn SC-FDMA cho LTE. PAPR giúp mang lại hiệu quả cao trong việc thiết kế các bộ khuếch đại công suất UE[1], và việc xử lý tín hiệu của SC- FDMA vẫn có một số điểm tương đồng với OFDMA, do đó, tham số hướng DL và UL có thể cân đối với nhau. Giống như trong OFDMA, các máy phát trong hệ thống SC- FDMA cũng sử dụng các tần số trực giao khác nhau để phát đi các ký hiệu thông tin. Tuy nhiên các ký hiệu này phát đi lần lượt chứ không phải song song như trong OFDMA. Vì thế, cách sắp xếp này làm giảm đáng kể sự thăng giáng của đường bao tín hiệu của dạng sóng phát. Vì thế các tín hiệu SC-FDMA có PAPR thấp hơn các tín hiệu