FAM là AM cho phép học và nhớ lại với các mẫu đƣợc biểu diễn ở dạng tập mờ. FAM có ƣu điểm quan trọng là nhớ lại các mẫu đã lƣu từ các mẫu vào nhiễu hay không đầy đủ. Do các mẫu đƣợc thể hiện ở dạng tập mờ nên FAM đƣợc áp dụng trong việc suy diễn, xử lý với các thông tin không chính xác. Vì vậy, FAM đƣợc áp dụng cho rất nhiều ứng dụng trong lĩnh vực nhƣ xử lý ảnh, ƣớc lƣợng và dự báo.
5.2 Các nghiên cứu liên quan
Các nghiên cứu về FAM có thể chia thành hai nhóm chính gồm phát triển các mô hình mới và áp dụng mô hình lý thuyết vào các ứng dụng thực. Ngoài ra, có một số lƣợng nhỏ các nghiên cứu khác về lý thuyết nhƣ các điều kiện để nhớ lại đúng các mẫu đã lƣu và chuyển đổi thành các FAM mới từ một FAM ban đầu
5.2.1 Các mô hình lý thuyết
Trong hƣớng nghiên cứu này, các nhà khoa học sử dụng các thao tác của toán học, logic mờ và toán học hình thái trong quá trình học và nhớ lại để tạo ra các FAM chuẩn và một số biến thể của FAM.
Các FAM chuẩn đƣợc nghiên cứu rộng rãi do ba ƣu điểm của chúng về tính chịu nhiễu, khả năng lƣu trữ và tính hội tụ. Kosko [43,44] đƣa ra mô hình FAM đầu tiên lƣu trữ luật mờ ―Nếu X là Xk thì Y là Yk‖ bằng cách sử dụng luật Hebb mờ.
83
nhiên, khả năng lƣu trữ lại thấp do lƣu mỗi luật trong một ma trận nên hệ thống mờ của Kosko gồm nhiều ma trận và kết quả ra của hệ thống đƣợc tổng hợp từ kết quả ra của các ma trận thể hiện một luật mờ đó. Junbo và đồng nghiệp [40] đƣa ra một luật học cho FAM với sự tổng hợp max-min trong quá trình nhớ lại. Với một số điều kiện, luật đƣa ra có thể mã hóa hiệu quả nhiều cặp mẫu trong một FAM đơn và thu đƣợc các liên kết hoàn hảo. Chung và Lee [14,15] cũng đƣa ra một mô hình FAM và một định lý về nhớ lại hoàn hảo các mẫu đã lƣu. Tiếp theo, hai thuật toán mã hóa hiệu quả (mã hóa trực giao, mã hóa trọng số) đƣợc công bố. Sau đó, hai tác giả này còn đƣa ra kết quả nghiên cứu về việc thêm vào hay bớt đi một mẫu trong FAM [15]. Xiao và đồng nghiệp [71] đƣa ra một thuật toán học mã hóa max-min cho FAM với việc lấy cực đại của phép nhân giữa mẫu vào và ma trận trọng số để nhớ lại. Phƣơng thức mới này có thể lƣu trữ các mẫu của bộ nhớ liên kết trong chế độ tự liên kết. Mã hóa max-min đƣợc dùng để tính toán trọng số kết nối của FAM. S.T.Wang và Lu [65] đã thiết kế một tập các FAM dựa vào các thao tác của logic mờ và toán học hình thái với hai thao tác chính là giãn nở và co rút. Các FAM với thao tác giãn nở làm việc tốt với các nhiễu dạng giãn nở. Còn các FAM với thao tác co rút làm việc tốt với các nhiễu dạng co rút. Tập FAM này ở chế độ tự liên kết có khả năng lƣu trữ không giới hạn và hội tụ trong một lần lặp. Nhóm các FAM này có thể làm hiệu quả với các nhiễu pha trộn. Sussner và Valle [58,59] giới thiệu một họ các FAM gợi ý. Mỗi FAM gợi ý gồm một mạng các nơ-ron Pedrycz logic kết nối trong. Các trọng số liên kết đƣợc xác định bởi cực tiểu của các gợi ý của mỗi cặp mẫu. Họ mô hình này cũng có ƣu điểm về khả năng lƣu trữ không giới hạn, hội tụ sau một lần lặp và chịu nhiễu tốt với các mẫu co rút. Hơn nữa hai tác giả còn trình bày về một số ƣu điểm của họ mô hình này và thảo luận mối quan hệ giữa FAM gợi ý và Bộ nhớ liên kết hình thái (MAM – Morphological Associative Memory).