Ti‚ng Vi»t
[1] Ho ng Th‚ Tu§n, V• mºt sŁ v§n • ành t‰nh cıa h» ph÷ìng tr…nh vi ph¥n ph¥n thø, Lu“n ¡n ti‚n s¾ To¡n håc, Vi»n To¡n håc, 2017.
[2] Bòi Thà Thóy, Dao ºng phi tuy‚n y‚u cıa h» c§p ba câ ⁄o h m c§p ph¥n sŁ, Lu“n ¡n ti‚n s¾ Cì håc, Håc vi»n Khoa håc v Cæng ngh», 2017. Ti‚ng Anh
[3] A. Boroomand and M.B. Menhaj (2008), Fractional-order Hopfield neural networks , In International Conference on Neural Information Processing (pp. 883-890), Springer.
[4] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan (1994), Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
[5] S.S.L. Chang and T.K. Peng (1972), Adaptive guaranteed cost control of systems with uncertain parameters , IEEE Trans. Aut. Contr., 17, pp. 474 483.
[6] L.O. Chua and L. Yang (1998), Cellular neural networks: Theory , IEEE Transactions on Circuits and Systems, 35(10), pp. 1257 1272. [7] L.O. Chua and L. Yang (1998), Cellular neural networks: Applications ,
IEEE Transactions on Circuits and Systems, 35(10), pp. 1273 1290. [8]M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos and R. Castro-
punov uniform stability for fractional order systems , Communications in Nonlinear Science and Numerical Simulation, 22(1-3), pp. 650 659. [9] P. Gahinet, A. Nemirovskii, A.J. Laub and M. Chilali (1995), LMI
Control Toolbox for Use with MATLAB, The MathWorks, Natick, MA. [10] H. He, L. Yan and J. Tu (2012), Guaranteed cost stabilization of time-
varying delay cellular neural networks via Riccati inequality approach , Neural Process Lett., 35, pp. 151 158.
[11] H. He, L. Yan and J. Tu (2013), Guaranteed cost stabilization of cellular neural networks with time-varying delay , Asian J. Control, 15(4), pp. 1224 1227.
[12] P. He and Y. Li (2016), Optimal guaranteed cost synchronization of cou-pled neural networks with Markovian jump and mode-dependent mixed time-delay , Optim. Control Appl. Methods, 37(5), pp. 922 947. [13] S. Liu, R. Yang, X.F. Zhou, W. Jiang, X. Li and X.W. Zhao (2019),
Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems , Communications in Nonlinear Science and Numerical Simulation, 73, pp. 351 362 (2019)
[14] T. Kaczorek (2011), Selected Problems of Fractional Systems Theory, Springer.
[15] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo (2006), Theory and Appli- cations of Fractional Differential Equations, Springer.
[16] J.H. Park and K. Choi (2005), Guaranteed cost control of uncertain non-linear neutral systems via memory state feedback , Chaos Solit Fractals., 24, pp. 183 190.
[17] I.R. Petersen and D.C. Macfarlane (1994), Optimal guaranteed cost con-trol and filtering uncertain linear systems, IEEE Trans. Aut. Contr., 39, pp. 1971 1977.
32
[18] Z. Shuo, Y.Q. Chen and Y. Yu (2017), A Survey of Fractional-Order Neural Network , ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers.
[19] E.D. Sontag (1998), Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer.
[20] M.V. Thuan and D.C. Huong (2019), Robust guaranteed cost control for time-delay fractional-order neural networks systems , Optimal Control Applications and Methods, 40(4), pp. 613 625.
[21]L. Yu and J. Chu (1999), An LMI approach to guaranteed cost control of linear uncertain time-delay systems , Automatica, 35, pp. 1155 1159.
[22] J. Zabczyk (1992), Mathematical Control Theory: An Introduction, Boston, Birkhauser.