Ti‚ng Vi»t
[1] Ho ng Th‚ Tu§n, V• mºt sŁ v§n • ành t‰nh cıa h» ph÷ìng tr…nh vi ph¥n ph¥n thø, Lu“n ¡n ti‚n s¾ To¡n håc, Vi»n To¡n håc, 2017.
[2] Bòi Thà Thóy, Dao ºng phi tuy‚n y‚u cıa h» c§p ba câ ⁄o h m c§p ph¥n sŁ, Lu“n ¡n ti‚n s¾ Cì håc, Håc vi»n Khoa håc v Cæng ngh», 2017. Ti‚ng Anh
[3] A. Boroomand and M.B. Menhaj (2008), Fractional-order Hopfield neural networks , In: International Conference on Neural Information Processing (pp. 883-890), Springer.
[4] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan (1994), Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
[5] L.P. Chen, Y. Chai, R.C. Wu, T.D. Ma, H.Z. Zhai (2013), Dynamic anal- ysis of a class of fractional-order neural networks with delay , Neurocom-puting, 111, pp. 190 194.
[6]L. Chen, T. Li, Y.Q. Chen, R. Wu, S. Ge (2019), Robust passivity and feedback passification of a class of uncertain fractional-order linear sys- tems , International Journal of Systems Science, 50(6), pp. 1149 1162. [7] L.O. Chua and L. Yang (1998), Cellular neural networks: Theory ,
[8] L.O. Chua and L. Yang (1998), Cellular neural networks: Applications , IEEE Transactions on Circuits and Systems, 35(10), pp. 1273 1290. [9] Z. Ding, Z. Zeng, H. Zhang, L. Wang, L. Wang (2019) New results on
passivity of fractional-order uncertain neural networks , Neurocomputing, 351, pp. 51 59.
[10]M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos and R. Castro- Linares (2015), Using general quadratic Lyapunov functions to prove Lya- punov uniform stability for fractional order systems , Communications in Nonlinear Science and Numerical Simulation, 22(1-3), pp. 650 659.
[11] T. Kaczorek (2011), Selected Problems of Fractional Systems Theory, Springer.
[12] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo (2006), Theory and Appli- cations of Fractional Differential Equations, Springer.
[13]M.J. Park, O.M. Kwon, J.H. Ryu (2018), Passivity and stability analysis of neural networks with time-varying delays via extended free-weighting matrices integral inequality , Neural Networks, 106, pp. 67 78.
[14] C. Li, X. Liao (2005), Passivity analysis of neural networks with time delay , IEEE Transactions on Circuits and Systems II: Express Briefs, 52(8), pp. 471 475.
[15] Y. Li, Y.Q. Chen, L. Podlubny (2010), Stability of fractional- order non- linear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability , Computers and Mathematics with Applications, 59(5), pp. 1810 1821.
[16] S. Liu, R. Yang, X.F. Zhou, W. Jiang, X. Li, X.W. Zhao (2019), Stability analysis of fractional delayed equations and its applications on consen-sus of multi-agent systems , Communications in Nonlinear Science and Numerical Simulation, 73, pp. 351 362.
41
[17] Z. Shuo, Y.Q. Chen and Y. Yu (2017), A Survey of Fractional-Order Neural Network , ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers.
[18] M.V. Thuan, H. Trinh, L.V. Hien (2016), New inequality-based approach to passivity analysis of neural networks with interval time- varying delay , Neurocomputing, 194, pp. 301 307.
[19] S. Xu, W.X. Zheng, Y. Zou, Passivity analysis of neural networks with time-varying delays , IEEE Transactions on Circuits and Systems II: Ex-press Briefs, 56(4), pp. 325 329.
[20] B. Yang, J. Wang, M. Hao, H.B. Zeng (2017), Further results on passiv-ity analysis for uncertain neural networks with discrete and distributed delays , Information Sciences, 430-431, pp. 77 86.
[21] Y. Yang, Y. He, Y. Wang, M. Wu (2018), Stability analysis of fractional- order neural networks: An LMI approach , Neurocomputing, 285, pp. 82 93.
[22] S. Zhang, Y. Yu, J. Yu (2017), LMI conditions for global stability of fractional-order neural networks , IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2423 2433.