CÁCH THỨC TIẾN HÀNH PHÂN TÍCH NHÂN TỐ
MÔ HÌNH HỒI QUY TUYẾN TÍNH BỘ
4. Từ menu Analyze Regression Linear…
5. Xuất hiện hộp thoại sau:
- Đưa biến phụ thuộc vào khung Dependent(s). - Đưa biến độc lập vào khung Independent(s). 6. Chọn phương pháp đưa biến vào ở ô Method.
35
- Mặc định SPSS sẽ chọn phương pháp đưa biến vào là Enter. Đây là phương pháp
mà SPSS sẽ xử lý tất cả các biến độc lập mà nhà nghiên cứu muốn đưa vào mô hình.
- Phương pháp đưa vào dần (forward selection). Biến độc lập đầu tiên được xem xét để đưa vào mô hình là biến có tương quan lớn nhất với biến phụ thuộc. Tiếp tục SPSS sẽ xét điều kiện để đưa các biến độc lập còn lại vào mô hình. Nếu biến đầu tiên không thoả điều kiện vào thì thủ tục này sẽ chấm dứt, không có biến nào được đưa vào mô hình.
- Phương pháp loại trừ dần (backward elimination). Đầu tiên tất cả các biến độc lập được đưa vào mô hình, biến có hệ số tương quan nhỏ nhất sẽ được kiểm tra đầu tiên, nếu không thoả điều kiện sẽ bị loại ra. Lúc này mô hình này sẽ được tính toán lại mà không có biến độc lập vừa loại. Tiếp theo SPSS sẽ lặp lại thủ tục trên cho đến khi nào giá trị F của biến có hệ số tương quan nhỏ nhất lớn hơn điều kiện thì quá trình này sẽ dừng lại.
Tham khảo điều kiện để đưa vào và loại ra PIN, FIN, FOUT, POUT.
- Phương pháp chọn từng bước (stepwise selection) là sự kết hợp của phương pháp đưa vào dần vào loại trừ dần và là phương pháp được sử dụng thông thường nhất.
Sử dụng phương pháp đưa biến vào nào phụ thuộc vào tính chất của cuộc nghiên cứu. Và phương pháp được sử dụng nhiều nhất là phương pháp chọn từng bước (stepwise selection).
7. Click vào ô Statistics…, để mở hộp thoại sau:
- Click chọn ô Collinearity diagnostics để kiểm tra hiện tượng Đa cộng tuyến (Multicollinearity). Độ chấp nhận của biến (Tolerances) và hệ số phóng đại phương sai (Variance inflation factor – VIF) được dùng để phát hiện hiện tượng đa cộng tuyến. Quy tắc là khi VIF vượt quá 10 là dấu hiệu của đa cộng tuyến.
36
8. Click Continue để trở lại hộp thoại Linear Regressions click Ok để thực hiện lệnh.
Các bước đánh giá mô hình
VD: sử dụng stepwsise để đưa các biến độc lập vào mô hình.
Mô hình: sự hài lòng của DK về điểm đến = α + β1 (sự hài lòng về dịch vụ lưu trú) + β2 (sự hài lòng về dịch vụ ăn uống) + β3 (sự hài lòng về dịch vụ mua sắm) + β4 (sự hài lòng về dịch vụ vận chuyển) Giá trị Tolerances và VIF ở bảng số 3 (bảng Coefficients) cho thấy không hiện diện hiện tượng đa cộng tuyến của các biến. tiếp tục đánh giá mô hình.