Công thức nấu ăn

Một phần của tài liệu tìm hiểu về dầu dừa (Trang 25 - 34)

II.1. Bánh hạnh nhân dừa:

• 2 quả trứng trắng

• Một ít muối

• 1/2 muỗng cà phê vani

• 2/3 cốc đường hoặc 1/4 chén đường và một ít đường chiết xuất từ cỏ ngọt

• 1 cốc mãnh vụn dừa

Đánh lòng trắng trứng với muối và vanilla cho đến dạng mềm mịn. Dần dần thêm đường (và đường cỏ ngọt), đánh cho đến quánh đặc lại. Cho vào dừa. Nấu với lượng lớn bơ. Cho thêm muỗng cà phê vani. Nướng ở 325 đọ trong 20 phút. Làm cho khoảng 18 bánh. Mỗi cái bánh ở kích thước này sẽ có khoảng 4 gram dầu dừa.

II.2. Sữa dừa:

Trộn trong một hộp chứa và lắc đều trước khi sử dụng:

• 1 lon nước cốt dừa

• ½ lon nước

• 1-2 muỗng canh mật ong hoặc chất ngọt khác để hương vị

Chú ý: Lưu trữ trong tủ lạnh và không sử dụng sau 4 ngày.

II.3. Dầu MCT / dừa hỗn hợp dầu.

Lưu trữ ở nhiệt độ phòng, trong một cái lọ kích thước: 16 Aoxơ MCT dầu + 12 Aoxơ dầu dừa

II.4. "Kẹo mềm"

Nấu chảy và trộn 1 chén dầu dừa với 1 miếng chocola với nhau, chia thành những khối kem dẻo bằng nhau và đặt trong tủ đông. Trong một khay có 16 khối, mỗi khối sẽ bằng 1 muỗng canh dầu dừa. Thêm dừa xay và/hoặc quả hạch vào cho phong phú.

TỔNG KẾT

Phụ lục

Bảng 1: CCRD cho thủy phân dầu dừa và mức độ của các dẫn xuất ở dạng

MCFA, MCDG, và MCMG sản xuất bởi G. candidum lipase cục bộ trong SSF. ST

T Độ ẩm (bổsung) (%) Dầu (%) Thời gian(ngày) Dầu dừa thủyphân (%) MCFA(%) MCDG(%) MCMG(%)

1 18 10 16.0 40.00 6.70 26.00 7.32 2 42 10 16.0 62.00 480 7.30 6.74 3 18 40 8.5 7.67 3.67 3.85 0.16 4 42 40 8.5 2.43 0.17 2.36 0.00 5 18 10 24.5 7.40 1.24 6.15 0.00 6 42 10 30.0 46.00 22.40 20.50 2.64 7 18 40 24.5 13.12 4.64 8.48 0.00 8 42 40 24.5 27.30 18.30 9.00 0.00 9 10 25 16.5 30.00 7.77 21.60 0.70 10 50 25 16.5 55.80 47.00 7.80 1.00 11 30 0 16.5 54.13 40.00 6.78 7.43 12 30 50 16.5 39.70 14.18 14.80 0.63 13 30 25 3.0 1.00 0.00 1.00 0.00 14 30 25 30.0 61.00 46.40 14.30 0.50 15 30 25 16.5 28.00 7.50 20.30 0.22 16 30 25 25.0 11.42 2.10 9.32 0.00 17 30 25 16.5 28.00 17.80 9.70 0.50 18 30 25 16.5 14.73 7.73 7.00 0.00 19 30 25 16.5 20.00 7.00 13.00 0.00 20 30 25 16.5 15.00 5.00 10.00 0.00

Bảng 2: Phân tích ANOVA của mô hình bậc ba rút gọn

A: độ ẩm (M); B: hàm lượng dầu (O); C: thời gian (t).

R-squared = 0.8728; điều chỉnh R-squared = 0.8044.

Source Sum of squares DF Mean square F value Prob >F Model 6489.22 11 589.93 4.99 0.0154 Significant A 7.03 1 7.03 0.059

B 265.65 1 265.65 2.25C 601.29 1 601.29 5.09 C 601.29 1 601.29 5.09 A 2 0.061 1 0.061 5.14E-04 B 2 1262.8 1 1262.8 10.68 C 2 45.34 1 45.34 0.38 AC 271.67 1 271.67 2.3 BC 1012.97 1 1012.97 8.57 A 3 215.65 1 215.65 1.82 C 3 804.19 1 804.19 6.8 A 2 C 568.14 1 568.14 4.81 Residual 945.57 8 118.2

Lack of fit 234.22 3 78.07 0.55 0.6705 Not

significant

Pre error 711.34 5 142.27

Cor total 7434.79 19

Bảng 3: Thành phần của dầu dừa biến đổi được lựa chọn (MCO1-MCO6) được

sản xuất bởi chủng địa phương G.Candidum thông qua quá trình DIMOSFER cùng với hoạt động kháng khuẩn của nó.

Mẫu Điều kiện SSF

Độ ẩm (%)

MCO1 32

MCO2 42

Mẫu Điều kiện SSF Độ ẩm (%) MCO4 30 MCO5 50 MCO6 (opt) 30 Dầu dừa   Dầu khác  

Tài liệu tham khảo:

1. Che Man YB, Marina AM. Medium chain triacylglycerol. In: Shahidi F, editor.

Nutraceutical and Specialty Lipids and Their Co-Products. Boca Raton, Fla, USA: Taylor & Francis Group; 2006.

2. Sado Kamdem S, Guerzoni ME, Baranyi J, Pin C. Effect of capric, lauric and α- linolenic acids on the division time distributions of single cells of Staphylococcus aureus.

International Journal of Food Microbiology. 2008;128(1):122–128. [PubMed]

3. Sado-Kamdem SL, Vannini L, Guerzoni ME. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. International Journal of Food Microbiology. 2009;129(3):288–294. [PubMed]

4. Nobmann P, Smith A, Dunne J, Henehan G, Bourke P. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria

spp. and food spoilage microorganisms. International Journal of Food Microbiology. 2009;128(3):440–445. [PubMed]

5. Dohme F, Machmüller F, Sutter F, Kreuzer M. Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality.

Archives of Animal Nutrition. 2004;58(2):99–116. [PubMed]

6. Guerzoni ME, Lanciotti R, Vannini L, et al. Variability of the lipolytic activity in

Yarrowia lipolytica and its dependence on environmental conditions. International Journal of Food Microbiology. 2001;69(1-2):79–89. [PubMed]

7. Kabara JJ. Antimicrobial agents derived from fatty acids. Journal of the American Oil Chemists’ Society. 1984;61(2):397–403.

8. Soni KA, Nannapaneni R, Schilling MW, Jackson V. Bactericidal activity of lauric arginate in milk and Queso Fresco cheese against Listeria monocytogenes cold growth.

Journal of Dairy Science. 2010;93(10):4518–4525. [PubMed]

9. Hristov AN, Pol MV, Agle M, et al. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. Journal of Dairy Science. 2009;92(11):5561–5582. [PubMed]

10. Mun WK, Rahman NA, Abd-Aziz S, Sabaratnam V, Hassan MA. Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi. Research Journal of Microbiology. 2008;3:474–481.

11. Saad B, Ling CW, Jab MS, et al. Determination of free fatty acids in palm oil samples using non-aqueous flow injection titrimetric method. Food Chemistry. 2007;102(4):1407–1414.

12. Destain J, Roblain D, Thonart P. Improvement of lipase production from Yarrowia lipolytica. Biotechnology Letters. 1997;19(2):105–107.

13. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy. 1972;2(1):23–28. [PMC free article] [PubMed]

14. Hernandez K, Garcia-Verdugo E, Porcar R, Fernandez-Lafuente R. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield. Enzyme and Microbial Technology. 2011;48(6- 7):510–517. [PubMed]

15. Eliskases-Lechner F, Gueguen M, Panoff JM. Yeasts and molds-Geotrichum candidum. In: Fuquay JW, editor. Encyclopedia of Dairy Sciences. 2nd edition. San Diego, Calif, USA: Academic Press; 2011.

16. Boutrou R, Guéguen M. Interests in Geotrichum candidum for cheese technology.

International Journal of Food Microbiology. 2005;102(1):1–20. [PubMed]

17. Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Applied Biochemistry and Biotechnology. 2002;102-103:251–260. [PubMed]

18. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM. Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid- state fermentations. Journal of Biomedicine and Biotechnology. 2011;2011:12 pages.702179 [PMC free article] [PubMed]

19. Pandey A, Ashakumary L, Selvakumar P. Copra waste—a novel substrate for solid- state fermentation. Bioresource Technology. 1995;51(2-3):217–220.

20. Aberkane A, Cuenca-Estrella M, Gomez-Lopez A, et al. Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi. Journal of Antimicrobial Chemotherapy. 2002;50(5):719–722. [PubMed]

21. Rigo E, Ninow JL, Di Luccio M, et al. Lipase production by solid fermentation of soybean meal with different supplements. LWT. 2010;43(7):1132–1137.

22. Kwon DY, Rhee JS. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Journal of the American Oil Chemists’ Society. 1986;63(1):89–92.

23. Nor Hayati I, Che Man YB, Tan CP, Nor Aini I. Thermal behavior of concentrated oil- in-water emulsions based on soybean oil and palm kernel olein blends. Food Research International. 2009;42(8):1223–1232.

24. Patgaonkar M, Aranha C, Bhonde G, Reddy KVR. Identification and characterization of anti-microbial peptides from rabbit vaginal fluid. Veterinary Immunology and Immunopathology. 2011;139(2–4):176–186. [PubMed]

25. Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N. Actinopyga lecanora hydrolysates as natural antibacterial agents. International Journal of Molecular Sciences. 2012;13:16796–16811. [PMC free article] [PubMed]

26. Tahoun MK. Fatty acid and position specificities of an intracellular lipase from

Geotrichum candidum. Fat Science and Technology. 1987;89:318–332.

27. Lecocq J. Interactions entre Geotrichum candidum et Brevibacterium linens Influence de facteurs intervenant entechnologie fromagère [Ph.D. thesis] Universitè de Caen; 1991.

28. Tahoun MK, Mostafa E, Mashaly R, Abou-Donia S. Lipase induction in Geotrichum candidum. Milchwissenschaft. 1982;37:86–88.

29. Gervais P, Molin P. The role of water in solid-state fermentation. Biochemical Engineering Journal. 2003;13(2-3):85–101.

30. Rodríguez Couto S, Sanromán MA. Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal. 2005;22(3):211–219. 31. Khoramnia A, Lai OM, Ebrahimpour A, Tanduba CJ, Voon TS, Mukhlis S. Thermostable lipase from a newly isolated Staphylococcus xylosus strain; process optimization and characterization using RSM and ANN. Electronic Journal of Biotechnology. 2010;13(5)

32. Fernandes MLM, Krieger N, Baron AM, Zamora PP, Ramos LP, Mitchell DA. Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the

AOT/Isooctane reversed micellar system. Journal of Molecular Catalysis B. 2004;30(1):43–49.

33. Martínez-Ruiz A, García HS, Saucedo-Castañeda G, Favela-Torres E. Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Applied Biochemistry and Biotechnology. 2008;151(2-3):393–401. [PubMed]

34. Parfene G, Horincar V, Tyagi AK, Malik A, Bahrim G. Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica. Food Chemistry. 2013;136:1345–1349. [PubMed] 35. Carroll JM. United States of America Patent No. Rumbaugh, Graves, Donohue & Raymond, 1980.

36. Ruzin A, Novick RP. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. Journal of Bacteriology. 2000;182(9):2668–2671. [PMC free article] [PubMed]

37. Petschow BW, Batema RP, Talbott RD, Ford LL. Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic

Escherichia coli. Journal of Medical Microbiology. 1998;47(5):383–389. [PubMed] 38. Hayashi M. Feed additive for livestock and feed for livestock. United States Patent 5, 462, 967, 1995.

39. Kabara JJ. The Pharmacological Effect of Lipids. Champaign, Ill, USA: American Oil Chemists' Society; 1978. Fatty acids and dertivatives as antimicrobial agents; pp. 1–14. 40. Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy. 2001;45(11):3209–3212. [PMC free article] [PubMed]

41. Wang L-L, Johnson EA. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Applied and Environmental Microbiology. 1992;58(2):624–629. [PMC free article] [PubMed]

42. Glass KA, Johnson EA. Antagonistic effect of fat on the antibotulinal activity of food preservatives and fatty acids. Food Microbiology. 2004;21(6):675–682.

43. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM. In situ bioconversion of coconut oil via coconut solid state fermentation by Geotrichum candidum ATCC, 34614. Food and Bioprocess Technology. 2013 [PMC free article] [PubMed]

44. Yang D, Pornpattananangkul D, Nakatsuji T, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009;30(30):6035–6040. [PMC free article] [PubMed]

45. Freese E, Sheu CW, Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973;241(5388):321–325. [PubMed]

46. Goel G, Arvidsson K, Vlaeminck B, Bruggeman G, Deschepper K, Fievez V. Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and -linolenic acid. Animal. 2009;3(6):810–816. [PubMed]

47. Nakatsuji T, Kao MC, Fang JY. Antimicrobia property of lauric acid against P. acnea, its theraputical potential for inflammatory acnea vulgaris. Journal of Investigative Dermatology. 2009;124:2480–2488. [PMC free article] [PubMed]

48. Kitahara T, Aoyama Y, Hirakata Y, et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant

Staphylococcus aureus (MRSA) International Journal of Antimicrobial Agents. 2006;27(1):51–57. [PubMed]

49. Soni KA, Desai M, Oladunjoye A, Skrobot F, Nannapaneni R. Reduction ofListeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. International Journal of Food Microbiology. 2012;155(1-2):82– 88. [PubMed]

Một phần của tài liệu tìm hiểu về dầu dừa (Trang 25 - 34)

Tải bản đầy đủ (DOCX)

(34 trang)
w