Phát biểu các bài toán đối ngẫu và thiết lập quan hệ đối ngẫu yếu và quan hệ đối ngẫu mạnh cho nghiệm hữu hiệu, nghiệm hữu hiệu yếu và nghiệm chính thường (địa phương) của

Một phần của tài liệu Điều kiện cần, đủ đạt cực trị và đối ngẫu trong bài toán tối tưu véctơ (Trang 35 - 38)

mạnh cho nghiệm hữu hiệu, nghiệm hữu hiệu yếu và nghiệm chính thường (địa phương) của bài toán tối ưu véctơ nửa vô hạn (Định lý 3.1.1, Định lý 3.1.2, Định lý 3.2.1 và Định lý 3.2.2) Ngoài ra, một số ví dụ cũng được đồng thời cung cấp để phân tích và minh họa các kết quả thu được.

Tài liệu tham khảo

[1] G. Caristi, M. Ferrara, A. Stefanescu, Semi-infinite multiobjective programming

with generalized invexity, Mathematical Reports12 (2010), 217–233.

[2] T. D. Chuong,Lower semicontinuity of the Pareto solution in quasiconvex semi-

infinite vector optimization, J. Math. Anal. Appl.388 (2012), 443–450.

[3] T. D. Chuong, Optimality and duality for proper and isolated efficiencies in

multiobjective optimization, Nonlinear Anal.76 (2013), 93–104.

[4] T. D. Chuong, N. Q. Huy, J.-C. Yao,Stability of semi-infinite vector optimization problems under functional perturbations, J. Glob. Optim.45(2009), 583–595.

[5] T. D. Chuong, N. Q. Huy, J.-C. Yao, Subdifferentials of marginal functions in

semi-infinite programming, SIAM J. Optim.20 (2009), 1462–1477.

[6] T. D. Chuong, N. Q. Huy, J.-C. Yao, Pseudo-Lipschitz property of linear semi-

infinite vector optimizition problems, European J. Oper. Res.200(2010), 639–644.

[7] T. D. Chuong, D. S. Kim, Nonsmooth semi-infinite multiobjective optimization

problems J. Optim. Theo. Appl. (2013) DOI: 10.1007/s10957-013-0314-8 (online- first).

[8] T. D. Chuong, J.-C. Yao, Sufficient conditions for pseudo-Lipschitz property in

convex semi-infinite vector optimization problems, Nonlinear Anal. 71 (2009), 6312–6322.

[9] T. D. Chuong, J.-C. Yao,Isolated and proper efficiencies in semi-infinite vector optimization problems J. Optim. Theo. Appl. (2013) DOI: 10.1007/s10957-013- 0425-2 (online-first).

[10] N. Dinh, M. A. Goberna, M. A. López, T. Q. Son, New Farkas-type constraint

qualifications in convex infinite programming, ESAIM Control Optim. Calc. Var.

13 (2007), 580–597.

[11] N. Dinh, B. S. Mordukhovich, T. T. A. Nghia, Qualification and optimality con-

ditions for DC programs with infinite constraints, Acta Math. Vietnamica 34

[12] X. Fan, C. Cheng, H. Wang, Density of stable convex semi-infinite vector opti- mization problems, Oper. Res. Lett. 40(2012), 140–143.

[13] A. M. Geoffrion,Proper efficiency and the theory of vector maximizationJ. Math.

Anal. Appl. 22 (1968), 618–630.

[14] I. Ginchev, A. Guerraggio, M. Rocca, From scalar to vector optimization Appl.

Math. 51 (2006), 5–36.

[15] M. A. Goberna, M. A. López, Linear Semi-Infinite Optimization, John Wiley & Sons, Chichester, UK, 1998.

[16] A. Gopfert, H. Riahi, C. Tammer, C. Zalinescu, Variational Methods in Partially

Ordered Spaces, Springer, New York, 2003. (adsbygoogle = window.adsbygoogle || []).push({});

[17] N. Q. Huy, D. S. Kim,Lipshitz behavior of solutions to nonconvex semi-infinite

vector optimization problems, J. Glob. Optim.56(2013), 431–448.

[18] J. Jahn, Vector Optimization: Theory, applications, and extensions, Springer-

Verlag, Berlin, 2004.

[19] C. Li, K. F. Ng, T. K. Pong,Constraint qualifications for convex inequality sys- tems with applications in constrained optimization, SIAM J. Optim. 19 (2008), 163–187.

[20] D. T. Luc,Theory of Vector Optimization, Lecture Notes in Economics and Math-

ematical Systems, 319, Springer-Verlag, Berlin, 1989.

[21] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I:

Basic Theory, Springer, Berlin, 2006.

[22] B. S. Mordukhovich, N. M. Nam, N. D. Yen,Fréchet subdifferential calculus and

optimality conditions in nondifferentiable programming, Optimization55(2006), 685–708.

[23] R. Reemtsen, J.-J. Răuckmann, (eds.)Semi-infinite programming, Nonconvex Opti- mization and its Applications, 25. Kluwer Academic Publishers, Boston, MA, 1998. [24] R. T. Rockafellar,Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[25] P. H. Sach, D. S. Kim, G. M. Lee, Strong duality for proper efficiency in vector optimization problems, J. Optim. Theo. Appl.130 (2006), 139–151.

[26] Y. Sawaragi, H. Nakayama, T. Tanino, Theory of Multiobjective Optimization,

Mathematics in Science and Engineering, 176. Academic Press, Inc., Orlando, FL, 1985.

[27] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and Appli-

cation, John Wiley & Sons, New York, 1986.

[28] P. Wolfe, A duality theorem for nonlinear programming, Quarterly of Applied

Mathematics19 (1961), 239–244.

[29] M. Zeleny,Multiple Criteria Decision Making, McGraw-Hill Book Company, New

York, 1982.

[30] X. Y. Zheng, K. F. Ng, Strong KKT conditions and weak sharp solutions in

convex-composite optimization, Math. Program.126(2011), 259–279.

[31] X. Y. Zheng, K. F. Ng, Subsmooth semi-infinite and infinite optimization prob-

Một phần của tài liệu Điều kiện cần, đủ đạt cực trị và đối ngẫu trong bài toán tối tưu véctơ (Trang 35 - 38)