. 2a 3a 1 7a
THI THỬ THPT QUỐC GIA (ĐỀ 20) Câu 1 (2,0 điểm)Cho hàm số
2 33 3
y= x − x + x
a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b. Lập phương trình đường thẳng đi qua điểm cực đại của đồ thị (C) và vuông góc với tiếp tuyến của đồ thị (C) tại gốc tọa độ.
Câu 2 (1, 0 điểm)
a. Tìm phần thực và phần ảo của số phức z thoả mãn điều kiện z+ +(2 i z) = +3 5i
b. Cho α là góc mà tanα =2. Tính 3 sin 3 sin 3cos
P α
α α
=
+
Câu 3 (0,5 điểm) Giải phương trình: 2 2 1 2 log (x −2x− = −8) 1 log (x+2)
Câu 4 (1, 0 điểm) Giải bất phương trình 3x+ +2 x+ >3 2x−1
Câu 5 (1, 0 điểm) Tính: I =∫01(x+2)e dxx .
Câu 6 (1,0 điểm)Cho khối chóp S.ABC có cạnh bên SA vuông góc với đáy. Mặt bên (SBC) tạo với đáy góc 600
.Biết SB = SC = BC = a. Tính thể tích khối chóp S.ABC theo a.
Câu 7 (1,0 điểm)Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 4x + 2y + 4z - 7 = 0 và mặt phẳng (α) : x - 2y + 2z + 3 = 0
a. Tính khoảng cách từ tâm I của mặt cầu (S) tới mặt phẳng (α).
b. Viết phương trình mặt phẳng (β) song song với mặt phẳng (α) và tiếp xúc với mặt cầu (S).
Câu 8(1,0 điểm)Trong mặt phẳng với hệ tọa độ Oxy,cho hình vuông ABCD có M(1;2) là trung điểm AB, N(-2;1) là điểm thuộc đoạn AC sao cho AN=3NC.Viết phương trình của đường thẳng CD
Câu 9(0,5 điểm) Đề cương ôn tập cuối năm môn Toán lớp 12 có 40 câu hỏi. Đề thi cuối năm gồm 3 câu hỏi trong số 40 câu đó. Một học sinh chỉ ôn 20 câu trong đề cương. Giả sử các câu hỏi trong đề cương đều có khả năng được chọn làm câu hỏi thi như nhau. Hãy tính xác suất để có ít nhất 2 câu hỏi của đề thi cuối năm nằm trong số 20 câu hỏi mà học sinh nói trên đã ôn.
Câu 10(1,0 điểm)Cho các số thực không âm a,b,c thõa mãn a+b+c =1.Tìm giá trị nhỏ nhất của biểu thức
2 2 2 2 2 2 2 2 2
3( ) 3( ) 2
M = a b +b c +c a + ab bc ca+ + + a + +b c
---Hết---