Giải phương trình: sin x1 sin 2 x1 cosx cos

Một phần của tài liệu Đề thi thử đại học cao đẳng tham khảo năm 2012 bồi dưỡng thi (94) (Trang 38)

2

Câu III (1 điểm): Tính tích phân: I = x dx x 8 2 3 1 1 − + ∫

Câu IV (1 điểm): Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Gọi K là trung điểm của cạnh BC và I là tâm của mặt bên CC′D′D. Tính thể tích của các hình đa diện do mặt phẳng (AKI) chia hình lập phương.

Câu V (1 điểm): Cho x, y là hai số thực thoả mãn x2−xy y+ 2 =2. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: M = x2+2xy−3y2.

II. PHẦN TỰ CHỌN(3 điểm)

1. Theo chương trình chuẩn

Câu VI.a (2 điểm):

1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có điểm M(–1; 1) là trung điểm củacạnh BC, hai cạnh AB, AC lần lượt nằm trên hai đường thẳng d1: x y+ − =2 0 và d2: cạnh BC, hai cạnh AB, AC lần lượt nằm trên hai đường thẳng d1: x y+ − =2 0 và d2:

x y

2 +6 + =3 0. Tìm toạ độ các đỉnh A, B, C.

2) Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x2+y2+ −z2 2x−2y− + =4z 2 0và đường thẳng d: x 3 y 3 z và đường thẳng d: x 3 y 3 z

2 2 1

− = − = . Lập phương trình mặt phẳng (P) song song với d và trục

Ox, đồng thời tiếp xúc với mặt cầu (S).

Câu VII.a (1 điểm): Giải phương trình sau trên tập số phức: (z2+9)(z4+2z2− =4) 0

2. Theo chương trình nâng cao

Câu VI.b (2 điểm):

1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; –3), B(3; –2), diện tích tamgiác bằng 1,5 và trọng tâm I nằm trên đường thẳng d: 3x y− − =8 0. Tìm toạ độ điểm C. giác bằng 1,5 và trọng tâm I nằm trên đường thẳng d: 3x y− − =8 0. Tìm toạ độ điểm C.

Một phần của tài liệu Đề thi thử đại học cao đẳng tham khảo năm 2012 bồi dưỡng thi (94) (Trang 38)

Tải bản đầy đủ (DOC)

(57 trang)
w