national council of teachers of mathematics nctm principles and process standards

Tài liệu Báo cáo Y học: Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins doc

Tài liệu Báo cáo Y học: Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins doc

... isoforms of Sp3 exist and that these different isoforms play different roles in the activation and repression of transcription [9]. In our hands, Sp1 generated a single band and Sp3 generated two bands ... progression of the cell cycle and the differentiation of cells [11,12]. The methylation of DNA plays a role in the regulation of gene expression [13,14], genomic imprinting [15] and inactivation of the ... 269) 2965 sites of initiation of transcription of Dnmt1 [24] might have been a mistake and that there is a single site only [23]. To understand the regulation of expression of the Dnmt1 gene...

Ngày tải lên: 22/02/2014, 07:20

10 563 0
Multidimensional characterization of quality of experience of stereoscopic 3D TV docx

Multidimensional characterization of quality of experience of stereoscopic 3D TV docx

... performance of the visual system. It is assumed to be a subjectively and objectively measurable criterion that is of particular value of ascertaining long- term adaptive processes of the visual ... may move out of the screen plane depending on the disparity of the object on the screen. This decoupling of convergence and accommodation is a potential source of visual discomfort and may result ... P-values of two ways ANOVA (“Camera baseline” and “Scene”) 113 Table 5-7 : P-values of two ways ANOVA (“DOF” and “Scene”) 113 Table 5-8 : Correlation coefficients among three pairs of subjective...

Ngày tải lên: 16/03/2014, 17:20

239 448 0
Báo cáo khoa học: "Automatic Determination of Parts of Speech of English Words" docx

Báo cáo khoa học: "Automatic Determination of Parts of Speech of English Words" docx

... parts of speech to special or exceptional words. Other words are split into affix and kernel parts and assigned a part of speech on the basis of the part -of- speech implications of the affixes and ... Summary The net result of the part -of- speech studies is an algorithm which, used in conjunction with a dictionary of less than one thousand words and an affix list of less than two hundred, ... accuracy. DETERMINATION OF PARTS OF SPEECH 55 DETERMINATION OF PARTS OF SPEECH 65 [Mechanical Translation and Computational Linguistics, vol.10, nos.3/4, September and December 1967] ...

Ngày tải lên: 16/03/2014, 19:20

15 383 0
Health-related quality of life of elderly living in nursing home and homes in a district of Iran: Implications for policy makers pdf

Health-related quality of life of elderly living in nursing home and homes in a district of Iran: Implications for policy makers pdf

... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA ... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA ... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA...

Ngày tải lên: 22/03/2014, 14:20

6 385 0
Cách sử dụng A lot of, lots of, plenty of, a large amount of, a great deal of docx

Cách sử dụng A lot of, lots of, plenty of, a large amount of, a great deal of docx

... rice left. (không phải là: There is not much of rice left.) A lot of - lots of Không có sự khác nhau nhiều giữa a lot of và lots of. A lot of và lots of đều mang tính chất thân mật, suồng sã, ... credit cards. A large amount of, a great deal of , a large number of Cách diễn đạt này mang tính tương đối trang trọng. Sau A large amount of và a great deal of là danh từ không đếm được. ... Không có sự khác nhau nhiều giữa a lot of và lots of. A lot of và lots of đều mang tính chất thân mật, suồng sã, đứng trước danh từ không đếm được, danh...

Ngày tải lên: 02/04/2014, 13:20

6 1,7K 11
báo cáo hóa học: " Quality of life of Australian chronically-ill adults: patient and practice characteristics matter" doc

báo cáo hóa học: " Quality of life of Australian chronically-ill adults: patient and practice characteristics matter" doc

... or disability (11% of males and 7% of females) and looking after family or home (1% of males and 19% of females). Probably, this might explain some of the interaction. Policy and practice implications Based ... Health and Quality of Life Outcomes 2009, 7:50 http://www.hqlo.com/content/7/1/50 Page 4 of 11 (page number not for citation purposes) Table 1: Unadjusted mean and standard deviation of PCS-12 and ... quality of life (HRQOL) in a large sample of Australian chronically-ill patients and investigate the impact of characteristics of patients and their general practices on their HRQOL and to assess...

Ngày tải lên: 18/06/2014, 18:20

11 461 1
báo cáo hóa học: " A predictive model of Health Related Quality of life of parents of chronically ill children: the importance of care-dependency of their child and their support system" docx

báo cáo hóa học: " A predictive model of Health Related Quality of life of parents of chronically ill children: the importance of care-dependency of their child and their support system" docx

... Quality of life in parents of chronically ill children: standardized Regression Coefficients and Percentage of explained variance of the modified model. The model explains 21% and 20% of the ... Quality of life in parents of chron- ically ill children: standardized Regression Coefficients and Percent- age of Explained Variance of the Modified Model. Table showing the Predictive model of ... analyzed and inter- preted the data and drafted the manuscript. HM analyzed and interpreted data, drafted and revised the manuscript. HH supervised design and execution of the study and revised...

Ngày tải lên: 18/06/2014, 19:20

9 566 0
báo cáo hóa học:" Quality of life of patients after retropubic prostatectomy - Pre- and postoperative scores of the EORTC QLQ-C30 and QLQ-PR25" pptx

báo cáo hóa học:" Quality of life of patients after retropubic prostatectomy - Pre- and postoperative scores of the EORTC QLQ-C30 and QLQ-PR25" pptx

... reduction of the sexual activity aft er radiotherapy and a significant rise of sexual sym p- tom scores [11]. 4.2 Results of continence 4.2.1 Status of early and late continence 69.2% of all operated ... - Pre- and postoperative scores of the EORTC QLQ-C30 and QLQ-PR25. Health and Quality of Life Outcomes 2011 9:93. Submit your next manuscript to BioMed Central and take full advantage of: ã ... of other studies. This represents a reliable and comparable status of continence in our patients after retropubic prostatectomy. Loss of blood, body-mass index, age of the patient and state of...

Ngày tải lên: 20/06/2014, 15:20

9 888 0
báo cáo hóa học:"Personality and the physician-patient relationship as predictors of quality of life of cardiac patients after rehabilitation" pptx

báo cáo hóa học:"Personality and the physician-patient relationship as predictors of quality of life of cardiac patients after rehabilitation" pptx

... article as: Farin and Meder: Personality and the physician- patient relationship as predictors of quality of life of cardiac patients after rehabilitation. Health and Quality of Life Outcomes ... the model Farin and Meder Health and Quality of Life Outcomes 2010, 8:100 http://www.hqlo.com/content/8/1/100 Page 6 of 11 21. Julkunen J, Ahlstrom R: Hostility, anger, and sense of coherence as predictors ... fluctuated between 1.3% and 2.9% and is thus generally greater than the increase in explanation of variance by the characteristics of the disease. The relevance of this block of variables is mainly...

Ngày tải lên: 20/06/2014, 16:20

11 363 0
Báo cáo hóa học: " Research Article Multiple Positive Solutions in the Sense of Distributions of Singular BVPs on Time Scales and an Application to Emden-Fowler Equations" docx

Báo cáo hóa học: " Research Article Multiple Positive Solutions in the Sense of Distributions of Singular BVPs on Time Scales and an Application to Emden-Fowler Equations" docx

... implies that 0 ≤ u k k ≤ ε  ϕ ε on D and so 0 ≤ u 1 ≤ ε  ϕ ε on D. Thereby, the continuity of ϕ ε in every dense point of the boundary of D and the arbitrariness of ε guarantee that u 1 ∈ C 0 D. Finally, ... A. Khan, J. J. Nieto, and V. Otero-Espinar, “Existence and approximation of solution of three-point boundary value problems on time scale,” Journal of Difference Equations and Applications, vol. ... 1.1 arises in the study of gas dynamics and fluids mechanics, and in the study of relativistic mechanics, nuclear physics, and chemically reacting system see, e.g., 1 and the references therein...

Ngày tải lên: 22/06/2014, 11:20

13 372 0
Báo cáo hóa học: " Research Article Remarks on Sum of Products of h, q -Twisted Euler Polynomials and Numbers" potx

Báo cáo hóa học: " Research Article Remarks on Sum of Products of h, q -Twisted Euler Polynomials and Numbers" potx

... Cangul, 1 and Yilmaz Simsek 2 1 Department of Mathematics, Faculty of Arts and Science, University of Uludag, 16059 Bursa, Turkey 2 Department of Mathematics, Faculty of Arts and Science, University of ... He gave a different proof of complete sums of products of higher order q-Bernoulli polynomials. In 21, Jang et al. gave complete sums of products of Bernoulli polynomials and Frobenious Euler ... polynomials and numbers Here, we study on higher-order twisted h, q-Euler polynomials and numbers and complete sums of products of these polynomials and numbers, our method is similar to that of 11.For constructions...

Ngày tải lên: 22/06/2014, 18:20

8 348 0
Báo cáo hóa học: " COMPARISON OF FASTNESS OF THE CONVERGENCE AMONG KRASNOSELSKIJ, MANN, AND ISHIKAWA ITERATIONS IN ARBITRARY REAL BANACH SPACES" docx

Báo cáo hóa học: " COMPARISON OF FASTNESS OF THE CONVERGENCE AMONG KRASNOSELSKIJ, MANN, AND ISHIKAWA ITERATIONS IN ARBITRARY REAL BANACH SPACES" docx

... their fixed points, it is of theoretical and practical importance to compare the rate of convergence of these iterations, and to find out, if possible, which one of them converges faster. Recent works ... (4.3) (iv) The comparison of the fastness of first 10 iterates of the Krasnoselskij, Mann, and Ishikawa iterations to the fixed point x ∗ = 1isgiveninTable 4.1 with x 0 = 1.9, and α n = 1/(n +58)with 0 = ... L)  ·   x n −x ∗   . (3.7) 2 Comparison of fastness of the convergence Now, the interest of this paper is to compare the fastness of the convergence to the fixed point among the Krasnoselskij, Mann, and Ishikawa iterations...

Ngày tải lên: 22/06/2014, 22:20

12 292 0
RATE OF CONVERGENCE OF SOLUTIONS OF RATIONAL DIFFERENCE EQUATION OF SECOND ORDER ˇ ´ ´ S. doc

RATE OF CONVERGENCE OF SOLUTIONS OF RATIONAL DIFFERENCE EQUATION OF SECOND ORDER ˇ ´ ´ S. doc

... definitions of positive and negative semicycles of a solution of (1.5) relative to an equilibrium point ¯ x. A positive semicycle ofasolution{x n } of (1.5) consists of a “string” of terms {x l , x l+1 , ... Department of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USA E-mail address: senadak@pmf.unsa.ba M. R. S. Kulenovi ´ c: Department of Mathematics, University of Rhode Island, ... asymptotic behavior of solutions of (1.4). 5. Rate of convergence of (1.1) Consider (1.1) where the parameters α, β, γ, A, B,andC are nonnegative real numbers and the initial conditions x −1 and x −2 are...

Ngày tải lên: 23/06/2014, 00:20

19 245 0
w