list of international organization for standardization standards pdf

Review of International Technologies for Destruction of Recovered Chemical Warfare Materiel ppt

Review of International Technologies for Destruction of Recovered Chemical Warfare Materiel ppt

... p.edu Review of International Technologies for Destruction of Recovered Chemical Warfare Materiel Copyright © National Academy of Sciences. All rights reserved. Review of International Technologies for ... Evaluation of International Technologies for the Destruction of Non-Stockpile Chemical Materiel, National Research Council viii PREFACE of the NRC staff. In view of the international nature of the ... Academy of Sciences. All rights reserved. Review of International Technologies for Destruction of Recovered Chemical Warfare Materiel http://www.nap.edu/catalog/11777.html 26 REVIEW OF INTERNATIONAL...

Ngày tải lên: 05/03/2014, 12:20

129 513 0
Visualization of Host Behavior for Network Security pdf

Visualization of Host Behavior for Network Security pdf

... attraction forces can be defined on neighbor- ing nodes of a chain. The strength of these host cohesion forces can be fine-tuned with the third slider. Figure 4 demonstrates the effect of changing the forces. ... nice overview of the history of internet cartography. 2.3 Towards visual analytics for network security One of the key challenges of visual analytics is to deal with the vast amount of data from ... tracking of behavioral changes in traffic of hosts as one of the most essential tasks in the domains of network monitoring and network security. We propose a new visualization metaphor for monitoring...

Ngày tải lên: 05/03/2014, 23:20

16 384 0
Báo cáo khoa học: Staphylococcus aureus elongation factor G – structure and analysis of a target for fusidic acid pdf

Báo cáo khoa học: Staphylococcus aureus elongation factor G – structure and analysis of a target for fusidic acid pdf

... than previously thought. Our new conformation is signifi- cant, as it demonstrates the size of the conforma- tional space of EF-G when not bound to the ribosome. The active conformation of EF-G is the one that occurs ... transient conformation of EF-G that is compatible with a tRNA in the 30S A-site, and we can only speculate that this conformation of EF-G may be more similar to either of the confor- mations ... II conformation identical to that of EF-G in complex with the 70S ribosome and FA [22] (Fig. 3D). Whereas Phe88 in the ribosome-bound structure is exposed at the surface of EF-G and forms part of...

Ngày tải lên: 06/03/2014, 22:21

15 475 0
Báo cáo khoa học: Pressure and heat inactivation of recombinant human acetylcholinesterase Importance of residue E202 for enzyme stability pdf

Báo cáo khoa học: Pressure and heat inactivation of recombinant human acetylcholinesterase Importance of residue E202 for enzyme stability pdf

... lower for wild-type enzyme than for D74N and E202Q, allowing flexibility of the gorge for entrance and binding of substrates or inhibitors and exit of reaction products. The carboxylic groups of ... mechanism of the pressure denaturation process of rHuAChE, ANS binding measurements were performed. ANS has been used for probing hydrated hydrophobic surfaces in proteins [35] and formation of molten ... stabilization of transition states as replacement of E202 or E450 affects the catalysis of both charged and noncharged substrates [55,57]. (b) It maintains the conformation of E202 for optimal...

Ngày tải lên: 08/03/2014, 10:20

11 311 0
REPORT OF THE DIRECTOR GENERAL ON THE WORK OF THE ORGANIZATION FOR THE YEAR 2011 docx

REPORT OF THE DIRECTOR GENERAL ON THE WORK OF THE ORGANIZATION FOR THE YEAR 2011 docx

... evaluations are listed on the IOM Evaluation web page for 2011). C. Office of Legal Affairs 38. The regular tasks of the Office of Legal Affairs include: providing advice on matters of a legal ... ……………………….………………………………….….…… 1 STRUCTURE REFORM IMPLEMENTATION … …………… ………………. 3 I. OFFICE OF THE DIRECTOR GENERAL ………….………….………… 5 A. Office of the Chief of Staff ……….……………………………………… 5 B. Office of the Inspector General ... Report of the Director General on the work of the Organization for the year 2010; the Financial Report for the year ended 31 December 2010; the Revision of the Programme and Budget for 2011;...

Ngày tải lên: 08/03/2014, 16:20

83 396 0
Báo cáo khoa học: "Construction of Domain Dictionary for Fundamental Vocabulary" pdf

Báo cáo khoa học: "Construction of Domain Dictionary for Fundamental Vocabulary" pdf

... accuracy for MEDIA. That is, some words of MEDIA are often used in other contexts. For example, live coverage is often used in the SPORTS context. On the other hand, the method worked poorly for RECREATION ... Processing of proper nouns and use of estimated subject area for web page translation. In tmi97, pages 10–18, Santa Fe. 140 Table 1: Examples of Keywords for each Domain Domain Examples of Keywords CULTURE ... domain of unknown words except for words that are ambiguous in terms of domains and those that appear frequently in web sites of companies. Among our future work is to deal with domain in- formation...

Ngày tải lên: 17/03/2014, 04:20

4 353 0
Báo cáo " Preliminary study of weathering crust for changing plantation " pdf

Báo cáo " Preliminary study of weathering crust for changing plantation " pdf

... suitability of weatheringcrust for groups of cultivatedplants. ‐ Study of trace elements in weathering crust also contributes to determining the suitability of weathering crust for ... Journal of Geology240 (1997)40(inVietnamese). [3] DauHien etal.,Classifyingsoilbasedon study of weathering crust for susta inabl e develo pment of agricultureandforestryinmountainousarea, VNU ... and geochemical contents of weathering crust types. The study results are commonly presented in the form of table and scheme showing the alteration of chemicalcontents. +...

Ngày tải lên: 22/03/2014, 12:20

4 365 0
Health-related quality of life of elderly living in nursing home and homes in a district of Iran: Implications for policy makers pdf

Health-related quality of life of elderly living in nursing home and homes in a district of Iran: Implications for policy makers pdf

... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA ... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA ... src=" 5Of+ lKjKx8c+1vu88w9YldHolmF3DRl215Cbbxg0f97caHRL0a+WL1sWQji/T9+zzzs/FosV36pRTuPpr7xSfMmiBQu6de4467UZXbt179qt+7Jlfxk3ZvQBD7Vlq9Zb8/JWrlje6uRT1nySm6jKsY892jynYTwev/b6Qb3PPGO/twOAn5cRSwB+E4YPvfvCi/ot/eD9pR98kF4h/b7hw68dNKhf/wGJ5PtozepzL+jz3a327Nkz6t6RV183sHTp0nv27Ilu2fLMxKezq1fv0vX0lJSUWCxWp/px33zzTa3fnZhRo/7Or7cWbVgxI+PozHJdOravX7/+3r17r7780uOqZV97/aDit0d269xx8osv/6sbJvv37XPXsOEZmZk1jj16y5bNIYRKlQ5JHHNi6PVfDXgCgLAEgP++9bm5ox9+aOiIkW/Meu3KSweEEO4cOqxmrVo1a9XOi0aH3T1k5P0PHHDD+fPmZmRkVsvOLr5ww/r1r7z8UlJKiT++8EqFihlvlG8eP6p+QfnDQkqxRNy3q8T2L2p9/PLW5fPL7Ng0/oknmzVrut/Op0ye1LBRzvdc1HrG6af96fkX3l+yZOA1VzVr3uLcCy6oVOmQjMzMEELznIZm8QHgl8OlsAD8+t05+LYBl18xZfKkI448cs7CxYk2Szy34/Zbbv5XVZmQXiF9vyWL/rpi3JQZTy1ct7Nut81lDitIP7LSqJMP/UPNQ2+rduht1Y4edkLD8VV39E2/M+W1Ep8uTkktt7bvi90emtmgVftlH374ow57yNBhTz7xeKPGja+69rozz+59y403ZB+T9cas10IIV1173UtTX3BmARCWAPD/IS8aDSFUycr6ZN265jkNbxo0MDMzs3LlKiGERQsWtO/Y+YfvKh6Pn9rj3N7TNv6118TFjW8o3PnJxhnjMib0LlqhTGrqoiVLvspL3vT52lH3PzDi1rYrZv0pxL+Ntrzqz92fOPmmxwbeNqRo5U/WrUtNTf2et8uuXmPxwoWxWKxHzzNff21mxYyMYSPv7dWjWywW69qt+wP33evkAiAsAeD/wxOPjxv18KPxeLzuiSeOGT8hIyOzfadOiRsURw4f1qlLl+/ZNiMj8/ONnyd+/nLLluwTc96qe82+ul0TS8oVbPniw2+Kv+ZOL7Xu4w/y8wvO6NqqRKRg0qQXj82qXGLjshBCSInkdRz84DfHNTm5fTweDyEsnD8v49892mTE/aMefejBEEJ6hfS27Tv06z9gzPgJW/PyIpHIyPsfWLRggfMLgLAEgJ/cwvnz0tLSep5+Wq8e3fr37VOvQYPEnD1TJk/qdXbv79+2Wnb2vLlzQgjvzJnf7JyrPz33jwUVKid+dfIbzTM2Pj/gptSi15V/6Dh/4aYbB158cLmCvXsLU8sUznxtZUpS/KyCR++vOCex1bc1Wi9qfVetejmffPZZdvUaRW+UF40OH3r38KF3J5qzSPnyB6/9aM363Nyzzzlv1swZedFo+fLl7xx8Wzwer12njqthARCWAPCTW7RgwdnnnhdCiEajm7/e/tyUqbNmzgghxOPxqVOe735Gzx+yk1nvzOtxzeB1Xe4tLFsxsSTl8+UFeZvO77unTadvE6+TOxQ8OHr6TXeVzM3dWapUiOeH8uUKd+4sSE1NPqlei77tTynaW0GFymvP+WPTVm3r1q8fQohGt0SjWy449+zhQ+8qk5Y2dcrz+7372CeevOfuIWlpacdVy84+JqtXj25b8/L27t2blpaWlxf13BEAfgnMJgfAr9lLU1+4ZfAfQggrVyyf/dabox9+KNGZ7y9ZcvGAS3/IHtLKlr36tru2XvBU8UlfCyMln7r/n4oub1vlT9Yu3LM3uSC/MD8/nNfz2+TkMGVayVIlC+4dOea2wROSblmeuvebzO2fHrQ7Wm7X5rwKFceNf/LLTZuq16xZtmzZLzZtCiGUTUv78MNl0Wg0hNDm1LbHVq2akpISQihb9qBYLNbr7N6dunTp3/fCG26+ZfeuXWlpaRddfMn8uXMSj+IEgJ+REUsAfs3WrF6VlpYWj8fHjJ9w5aUDKmZktO/YKYTw6rRpLVu1/rebx2KxwWMnHVGz/j89SiSEUKJM5SMK/ul12OZZMybE40mHHVKYUy8++eWSk18ucU3/3fv2JX3xZbwgP95k9cQjti6PlUr/6LBm82pcsKmg7FttRk185Y1T27Zr0rTZi9NmnN69Rzz+7e1/uPOyK6685NLLypQp89ijj2zfvj2EcGG/fvPnzqmSlZW4LrfDqSc3z2kYQqhdp87k5/7kLAPwszNiCcCv1vrc3JwmTePx+CHp5WrWqt3non7XXj8oEonE4/E1a1b9q63i8fimzz9fs3rVtm3bHpswcWt+qbQPF5SOH1aQHAkhxLPqlY4uz9764q2jytXN3p3Y5MstkdVrU5d88GyFg5NbNv32/WWRv7y9/c13Uy4emHbz1XvufbREclrqIQeX/EuF42OlKoQQIp8t2VerTWHZisuO6zbt1ZmdO7avkpU1bsJTRceQkpJSuUqVSy69bMSwoTf+/pbs6jWG3nlHm7bt0tMrnNenT506JySiNy0tbfWqVU40AMISAH4qixctPKllqxDCnIWL582dc+PA6+qeeGKbtu0+WrO6Z6+zDhiidw6+LYTQtn2HmrVqZVaqtHJHys4+j+du33j86uffP7pH0t5YJPf9el/ef9sVa7OzC4o2nPPuleW2RdJSH05OLnz5tZIfvrM9EgntTs6/8Oy94yaWyqpcGN26/dEBnTu/8OWSUCGEUOb1UTsuGBdC2Fen09U3de7csf0Bjz8lJeWgcuUSP5csVSoej1euXKV/3z6JJTNef6tR48adT+u6Pje3SlaW0w2AsASA/75ZM2eMevjRSCRSs1btmrVqPz1hwhFHHhlCmP7KK4Nuunm/ladMnpRYPy0tLbHkit/fubn97SGEWLkjy5UukVS+Un5KqfzDqic9f/sLz5Usvm3N45NLlSz8ZnvSKc2//eiT5BDCHfeWqnt8/i3X7H3mhVKHHVoQzUu5ceCF1Y8/Y0n548K+XQVlK4SSqSGEkBLZmNP/nTnzWzZvcsCPsGP79sQPXbp2e3/Jktp16jw3ZeqVlw4IIRxbtWoI4aSWrRYvWigsAfh5uccSgF+t1atWFVViPB5/ZtLzNWvVTgTnd1d+duLT4yY8VXz9aW/PLXq4yPvHdqu58e2/xd4JPW++dE/xV/3fxcsdVFCqZJj+eonht+6p1aJcmdKFNw0p8/D4ku1b7du7NySHb6e/+udpq74JIZR+d+zudoOK3ndfnU7X33bnAY8/Gt1yYv36iZ87deny0tQX0tLS3n7zzS1bNjdr0eLe4feEEGrXqXPAjwMA/5+MWALw67Q+N7fzaV1DCBUPSj2pZav2nTrVqXNClaysvGg0Mda3n4oZGcX/+dLMNz5vcVXRP79JO7zW+tdT8vfmp5Ras/2YRu0O+nbfPx44mZIyvtIhZUuXDHv3Jb09L9Lh5G+vv2zfZX32ZTctP3XCjrP6l61TO2z5ptQHtbqGfbtSouuKejWEEFIiuZXq5UWjGZmZxQ9g+/bt48eOvfH3txQtmTlj+tARI+s1aNAt74yGOTnp6RVCCG6zBOCXwIglAL9axxx7bAhh6fJVIYQbB1730tQXQghbtmxOLD9gixb9PPapZ+OV6xb/7cJqZzVZ/XTtT6dn/3VEckpITUspe1By4lWhYsHu3dvz80NmRsFTk0rePnB3CCE1NdSt/e3i91O2by/c+nXy7vJVWyat2m+4MuGr7LbPz3iz+JI9e/ZMfOrJS6+4svjCww4/PBaL9eh55nHVsp+eMOHrr79KLK9eo4ZzDYCwBICfRM1atfKi0batW777zuxhI+/9+wMtVxxXLfu7K48eN773mWfkRaPrc3Pj8finX2wp/oiRlPy9OR/9qdzuaMG2FY1qf9W5/bcd2sbbtclv1ya/dcv0evXbVzmi8KCyhV3b74tuTc6o+Let2raMvzW3xKGVCkuUKNj18dqZV3Y4bvOC7751fqWqL077x+Ws+fn548eNPff8C8r9feaehMqVq2zNy1u5YvmEx8ddde11Nw68Li8aDSE0zMlJ/AAAPxeXwgLwq1W27EHrPv54y5bNIYQbB153erceiVso69VvcIC/iJHIi9NerVnt2Px4vFnzFtuO/Ns6SYX5TVZPDCH85ejOe0qUbbvw4tEjdxXfcFM0ZcHqjtdeNbP+CQXHZBWmlSkMIbw1J/29xYde1GvNA+NKlSlTeEKt/FVr9vzlg3m72t1Y8v0XSny6ZPepV8eP+vthpEQ+3/y3Mtywfv3oRx6+8fe37FeVIYR6DRqEED7fuLFZixY9ep45a+aMpR+8n3gGya5du5xuAIQlAPwkGjVuvHXHrrxo9KZBA4vq66ijjz7gyrt27cqPx3ue3bt5i5NmvboxqTC/9vrXS30b+8vRnWOl/zYK+eG2Q46qV65i+j+eNVKufOFjj2enli4sf1DhQWULDj2kIIQw4YWGhSFt9541kUiolFEYQqiUmXL9wJs3d3pkT5ur9+THSy6bftDro/6Rl2UrhBD+snTp 5Of+ dMCqDCFkZGSGEOqeWK9Xj24hhKlTnh86fKRTDMAvgUthAfg1i8fjUyZPOr1zx6lTnv+3Kx9+xBGVKh0ydfKkYUPuLL/xz01WT9yQ8bs/V+1RVJUhhA1t704tW3LrV4Wf5eYnXsuWbb5v5JDklKRNm5N37EiqelRBCCElpeSpbduXKR3yC0I8HkIIrVsUfPrl5p0HHx1CCCmRfXW77uj7VPLXnx80tnfyVxtCKHzkoQe3bNl89z3DD1iVRQ5OT39uytS27TvMWbh4v/l+AEBYAsB/36bPP+/ft09mZuawkff+24c9RiKRVes+zf1iyyWXXp5eJrJszutFj5H8h5RIbv1rQlJKpESJkBQSr5emvl02rXDjFymHH1qYWKuwMBQWxotv9+b7R3xx1Xv77Wpf3a47LhhX6fW7I1+sPqv3Oae2bfdDPlGvHt369+3TPKdh8dmGAEBYAsBPomJGRs1atd99Z/bihQvj8fi/Xf8vS5cOvPqq4+vU+TTr5B19ny6x/LW0Z69I/mrDP/5wbv6o4fqhnbrsO+PMfWf1Ljyrd2GnLiFSsmSrpvl1a8d3xMLHnyWHENLSSr75xpu794SU5BCJhBDCzi+/nHbc0v3eLnPbuvrrZySfevmutEoXnX/uD5yD56SWrZYuXzXj9bf2e0QKAAhLAPjvS0tLm7Nw8YzX3wohbPr88+9ZMz8//5GHHnxtxqsPPPJo1lFHhRBCSmRPm6t3dRlc8v0X0p69IvLZkhBCtdwnqlctyN+TXPQqmZLZunWbl19LCaHw4HLhy83JIYQGtd+rdPCHZUqHEMJXXyeFEPbtK6hzfK0G3yz624Ht2XrysofTd25cenTnTRVqlSxXceJzky++8IJFCxZ8/ydKTU3Nrl6jSlZWo8aNE3MRAcDPzuQ9APyaxWKxma9OnzVzRghhzepViath58+b26Rps/2qcsSwoS1atkwsP/yIIyp/Nntd3a4hhMKyFfe0uTrs21VqyeQyr4+KlNs8etL+s8J+HO3w2oyZe/YmLVuZsmdvUgjhwjOjIUSffyWSlhr2fRs25yWXLZu8ZvXaal/MXVG6at1Pp+0tUXZu9fP3ljwosZPMMslpaWmTX3y55+mnDRl2T81atb/7WdZ+tKZBw0YhhLlz3uvWueMNN9/SqHFjpxiAXwIjlgD8aq1ZvSotLe2Tdesa5uRkZGRmV6+RWP7Fpk3frcpuPc4oqs1IJFJq91f/tK+SqXubXhDrdteWryOHHX/wYccffNJpqR3OKt3hrNKXDNxWt0G39PTkdZ8kfxlNOrh8QdGNmROfL3nZhbtjsbDu05TDDy38w+A7tuwr0Wr5mL8c3fnPVXsUVWXYt+uwSpmJ95384sv9+14Yi8W++3E+WbcuhHDv8HsyMzNzmjTtcOrJieXvL1nimlgAhCUA/CS2bdsWQqh74on3DR8+9rFHn3v2mRBCw0Y5iQHM/aqyWnZ28W2bNG0S9u3/cMgyr9+bd+a4L29dVqZMWL6ycNGfkxb9OWne/N1HHX5YhfTCjIww6eWS3TruG/5I6RDCrl1h+epIk/oFe/eFwhB2JVfZeMJ5b9fu/03a4XtKlC2+28imFd07nlrUtM9Men7I4Nu/+3FWrlhRJSsrLy864PIrrr1+UNHyvLyoa2IBEJYA8N+Xmpr6/pIlIYTJz/2pa7fucxYuvufuISGEihkZieBM+HDZsuzq1feryhBC746nlFoy+Z/+ZH61IYRQUKFytTcuSUnJP+TQSNHr4PSUr75J2hkL+/YlXdF33+RXSr7xbkrDdgf17LL3y2hSuYOSkpMKK2ekbT6uTX5KqYXVzqr76bTie86cPap96xZF/0zU43c/UXp6egihYU5Orx7dDkkvd1LLVonlq1etcroB+Hm5xxKAX6eMzMw1q1eFEI6rlr1w/rz7R44IIazPza2SlVWmdOmi1V6b8eqNv7/lu5u3bN6k+i13/DX/nJDyt7+VZV4bvrvdoBDCUSkrRr0aK1ts0PGcXmVXrypMK1NQ47jCN96LLJu9/ewBqWd23XfrtXvbnplW9ej8T3OTm7doeVjG52O3p+enlMord1Tanq2Jx2Mmf7Whe5vmxYccV65Yfly1/UP366+/an5SyxBC23YdPvl4Xb0GDbp26x5CyItGmzVv4XQDICwB4CeR06RpXjRa98QT1360JoQwbOS9ieWdTuu6dWtexYoZ0eiW7OrV/9XmV/Y7v/+HS+NHNQghJC6LLahQOYRQ4ejDVi36p7s0+/Tp983WFSPun9+iybd3jyrd+dSdUyfsCiF8uj559drkoyoX7NmXtDOWfGjp/LA9hBByM+vWW/fin6v2CCFUXDb1mmEXJfYTi8UeefCBtR+tGfXwo/sdzOTn/tSpS5eVK5Y3z2kYQuiWd0aPnmeGEJZ+8H7rU05xrgEQlgDwkzipZaulH7zfpm27pR98sHD+vBsHXjdz+vSp015t2ar1lMmT+g+47Ps3P6/XGUNHd/z4qD+GEEotmby3yXmJ5e8VntGtzGeTJudvWr+vICklKRQ2bZo7eMikPz5z+KqPUnbGkpetSKlTKz8eD2f1T612bME325KTkpI++fiT+W/dm5ZSPoTwbY2Td27+4KCv9uxNKlllw5y3Xj9i6MKFW/PysqvXGHD5FYmpa/fzwZ//3H/AZd06dxw28t46dU7ocOrJ4yY8FUJ4+803rxt0g3MNgLAEgJ9E7Tp1hgy+vU3bdkVLEhPDZmRm/nXp0hBCZmalNatXb9++vVy5cgf4GxmJXHvxBVfPe2lf3a6lFv1p+7WzEss3ZZ971qZOFRa2yt+xM7Fk3drXJow/tEKFyIbP8zu2yT+jX9rDQ2Pjnyn55ZbkalXjKz9KrlTloD+2eKRoz8lfbdhw6LFV8v6yZemsUSPurp5drV//AeKaeVoAACAASURBVN//WarXqBlCWLVy5bvvzL7h5n9cuzt3zntDR4x0rgEQlgDwk0hLS0vcZnnZlVdNeHxcpUqHpFeosHLF8pq1ap9Yv35inUuvuPLlF6eGEFq2al25SpX99tCv9xkTn+7817SDS1TLOWrLn0t+G8vc/mnpb3duLSi1MfaPGYDy8/NDUvhmW2EISUs/TO552t7RT5ZKTgpnddv34qslCgqSHh71eLNl/9htQYXKsVD52HXPtj+lQbNmTf/tB3ln9ttt27cPIXy4Zu1Ha1bv2L4jsTwvGu18WlcnGoCfXVJhYaFvAYBfq3FjRrdt1yE1NTX7mKyatWqf16dPenqFHj3PzItGHx/72I2/vzWx2p49e9579521H320asWKIytXPqjYAGZhQeGzL7y88ZjW+cc125Z6aGLGnZSvN6bf07ygoKDYX9RQu07t3TtW7YwlffttOKRS2LU7KS01/5PPUgoKk9es+7T8M98WP7DIZ0vqvHFLlSMO7X3u+Ym7Jb9H/759HhkzbkC/viGEjIzMvLzorYPvqJKV9cas18qVK9+ocWMnGoCflxFLAH7Nzj7nvCGDbx86YuTS5au+2LTp8bGPTZ3yfM1atWrWqr1h/fqi1UqXLn1q23anFrtotrjXZr6a98GL647rUFC6YmJJQVqFkHZw2PlVKPrv2cLw6mtvPjtx/NAhg3fGCtLSkqJbw9FVkkqVKvw2nrx9+/YQyhTtsMSqt+suefDjtavLlEx5Y+bM7w/LNatXtWnbLhKJXHTxJQOvuWrliufHjJ+QuA/zjttvmz13vrMMwM/OcywB+DVLS0ubO+e9EMIXmzZ1OPXkEMKM19/KOuroEMINN98y7K47/+0eYrHY8cfXWfnBokZv/z7y2ZK/VWTJ1K2XT4vX7x6S/rFm53Ztbrn5tl17QvnySbFdyclJIZqX1OfCsw/ueO0J41YWrZb5zgNXHrz2+eeeDSFszdu68fON338Af7jt1sSTRRo1bvzitFdDCOXLlw8hrM/N7Xxa10jE/xEDICwB4Cd21bXXLVqwoF6DBkuXrxo34alGjRsnHhpZJSsrJSWyc+fO798897NP6zVoEIlE3ps17ZLI+5nvPBDy4yGEwvQjvz2iTlKxslz21w9DCK1Pbnn22b137Q7HHFNp+86Uiy+5pqBW662H1gshhH27DpvQ+9Fzmo6845YqWVlzFi7u0rXrfQ8+9D3v/ufFi/v0vaioHjMyM5+bMjUxBdFzzz7T6+zezi8AwhIAfnJdu3UfeM1VkUjku4/xuPSKK6+98vLv33zlihUNG+WEECKRyEN33froOU2znrkgMXS5p37PlIzKKWVSk1L/fk9mYbhr6Iht23anp2e8O39thQqp0a2xPV9vDvnxEqverjml/9xJY3t0bp9Yt2at2qed3q1CxYrf8+73DL2rzT9foNumbbsqWVmxWGzh/HkHfDAJAAhLAPgvi0QinU/rumjBgqIl63Nzb7p+YCwWS0tLO65adjQa/eF769G5/ZKXJ56zbUaVRzuUemfMrsNqV+k9uOCoEwurNiqs2ih+dP36PfpPXJB76XXX3fvyW2uuWHTJY7P2rFva9e3LH2+c/NfZ0485+qgf/l4vPD954KAbD/irRx58oPhDRwBAWALAT+uyK696fOxjiZ/zotHeZ54xd857W/PyQgjXDLz++quv/J5ty5cv/8WmTcWX3HzD9a8880Sdw9PPTt/U+LAymevezq/aLNbg7OKva5ZE7nlpac4bg6rsXv/8ZW3/9OwzO/K+mPbyS/n5+cV3tfSDD0qVKn3A9926Ne+TdesOOONrPB5fOH+eyWAB+OXwuBEAfhOmTJ5UuXKVRIwtWrBgw4b1s2bO6NnrrDZt28VisWuvvHzM+AkH3DAvGr34wgumTnu1KOpOPL7m5xs33v/wo9u/+ebyq67esH79/HlzGzfZ/3GUqampM2e8etrp3cr9/eElG9avf2f22yGE4+v87ogjj5j73ntpZcv+q6loL+h91uNPTTzg3DzDh97dqUuXmrVqO60A/EKkDB482LcAwK9etezqdw6+rUOnzsnJyUdWrjzxySc3rF+/Y/uOU049tWTJkr87oe7oRx5q1uKk726YmpaWEoncP3LEvn375s2dM/TOO3r0PDM9vcKuWGzQTTcnJyeXL19++isvd+zcpfzBBxd/lSpdevJzz3Xo1KloV+XLl//dCSdkV6++a9eujRs21D3xxDp1fnfAoz27Z4/Hxk8oXbr0lMmTKlSsWLbsQcVD9+033zyr9znOKQC/HEYsAfitWJ+be/XllybGHvOi0eY5DUMIT/7x2aJhzNlvv3nj72894LZ50eiuXbtCCAecL+cvS5fu2hVr0rRZ8YXz581NTU07oW7dH3ucZ3Y/fcR9oxJvNHzo3ekV0o+v87ucxk1CCLFY7OrLLx09brynjADwi+IeSwB+K6pkZWVXr5GYxScjM/PJPz67ZcvmgddctXLF8hBCo8aNW7U+JXGp6ndlZGZWycr6V7OwHl+nzvRXXil+/2R+fv7SDz44vk6dH3uQD426/5HHxibeaNGCBWs/WrN44cLDDz8i8dtHHnygZ6+zVCUAvzRGLAH4DYnH462aNXlx2qsZmZkhhJUrls+bO2fm9OkTn5uceLjlogULdu/Z3bJV6x+752h0y/ixY6+/8aaUlJT8/PzHHn2kZ69emZmVfmxVntymTeLmyX59zp/73nt9LurX6+zeRZ35+NjHxk14ynkEQFgCwM8pLxo9vXPH2XPnJ8b9EtfHVszIuHXwHUX99tGa1ede0OfH7nnD+vWjH3n4iCOP3LF9e7ceZ1TLzv5Rm//htlsvu+LKjMzMWCw2ZPDttwz+w5DBt+flRUc9/GhaWtp+hw0AwhIAfk6LFiy45+4hiZst4/H4S1NfmDVzxta8vKK8zItGr7v6ypGjHszMzPx/OJ53Zr/98otTR9w3qqh1U1NTL77wgrPPPa9HzzNDCLFYrN3JrYoGWgFAWALAL6It331n9qCbbk605X0jhn/91Vdz57w3ZvwTiStR4/H47b+/ucpRWf0HXPaTHsnFF17Qtn2H7mf0DH9/Dsr7S5bcMvgPiUtzE0cyoF/focNHqkoAhCUA/LIMH3p3CKF4W4YQjjn22Jq1ahU9InJ9bu4Tj489q/c52dVr/NcP4IXnJ2/6fNOF/foV3d757juzJzw+rs9F/Y459tjEWGU8Hu95+mk33HxLYupaABCWAPDLbcsQwpTJkx64797MzMzs6jWuG3RD0Qjh+tzcZ/84MadJk/9gUp8DGjP6kcLCcO75FxQNS950/cA1q1e179Tp6QkTXpz26rqPP27UuLGqBEBYAsD/Xluuz81dvGjhA/fdmxeNXjto0FFHHd2kWfNE/q3PzX3h+cmrV60865xz/7PCHDP6kb8uXXpi/fpn9T63KCkTU/WsWb2qYkZGCKFo0ldVCYCwBID/GYm5fCa/+HLRhKtvzHpt9MMPVczIGD1ufKtmTTIzM4v/duWK5bNmzly9auWp7dq3PuWU9PQK37Pzj9eufevN1xM92fX07olR0FgsVqpUqVtvuvGYqsfOnD49Go2OvP+BEEJRQybmgDVbDwDCEgD+Z+RFoxdfeMGQYfcU3V25csXyEMKO7TtCCBs2rP9k3bprrx8UiURisVjRYOP63Nw1q1fl5n728UdrD7jb+g0bVq5c5diqVffrwymTJz078emcJk0nPD6uWYsWx1XLvuzKq4p2O2XypFkzZySeMuLUACAsAeB/RiwWe+TBB0Kxy2LD359ymV29xktTX+jarXsIYc3qVWOfeDIjMzMvGv2PhxMTE73Ofe+9Bx8dXffEekX7SSxvmJPTp28/z6sEQFgCwP+klSuW3z9yROJplsUXTnzyyRDCS1NfaNaixdz33ksMM154Ub8Xp0456qij27RtF4vFQghb8/K+2LQpcUVrPB5/f8mSd9+ZXffEE0MIb7/5Zl5edNyEp8aNGd2v/4BFCxbUa9CgeD0uWrBg4DVXufwVAGEJAP/zYrHY1ZdfmpGRWXxi2EULFrw09YVzL7jglhtviEajmZmZAy6/IoTw2Weffv3V18cce+yzE59OrJnTpGl6hfRPPl63ZvWqaDTa+bSuaz9ac9HFlwy85qrb/nBH0VRAxSXGRdt36mSgEgBhCQC/HnnR6BOPj1v70Zr9Ri8TVq5YnnXU0fPnzmnTtl1eNHrv8Hvy8qJt23eYNXNGCKFhTk4iLBMTvTbMyUlPr9CyVeuD09P368bEvEFnn3te+46d3FEJgLAEgF+hxI2X015+aeT9D9SuU+dftV9eNBpC2LVrV8WMjN27dpVJTQ0h7N61619d1JoXjb4z++1nJz599rnnde3W3SglAMISAH79Fi1Y8PjYx7bm5bXv1Klps+ZFk8f+cPF4/KM1q+fNnTNz+vTs6jUGXH7FdwdCAUBYAsCv3/rc3MWLFiYueW3bvkPDRjnfv/7OnTvmzZ2zeOHCjIzM1qecUnwOWAAQlgAgMnNDCIsXLSxaMmvmjIyMzHoNGiT+Wb58+ezqNVJTU8UkAMISAAAA/qVkXwEAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGHpKwAAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJ/9euHZwAAAIxECRg/y2fLQj6MjMl5HMsHAAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLEwAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAACotUxwIokRAHhrZowAUFsWn12BuGoAAADc8AoLAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsTAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAA777/hQAACSdJREFUAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAAAQliYAAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsTQAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAA...

Ngày tải lên: 22/03/2014, 14:20

6 385 0
Đề tài " The classification of pcompact groups for p odd " pdf

Đề tài " The classification of pcompact groups for p odd " pdf

... Skeleton of the proof of the main Theorems 1.1 and 1.4 The purpose of this section is to give the skeleton of the proof of the main Theorems 1.1 and 1.4, but in the proofs referring forward to ... elementary abelian p-subgroups of X factor through a maximal torus. (See also Theorem 12.1 for equivalent formulations of condition (1).) Even in the Lie group case, the proof of the above theorem is ... self-contained proof of the entire classification theorem for p odd. Contents 1. Introduction Relationship to the Lie group case and the conjectural picture for p =2 Organization of the paper Notation Acknowledgements 2....

Ngày tải lên: 22/03/2014, 20:21

117 479 0
Analysis of the demand for counterfeit goods pdf

Analysis of the demand for counterfeit goods pdf

... percent) of the sample came from households with parental income of $100,000 or more. Textile and apparel majors accounted for 26.08 percent of the sample. Almost one-third (30.35 percent) of the ... principles and standards guiding the behaviour of an individual (or group) in the selection, purchase, use or selling of a good or service. Based on their sample of 1,900 heads of households within ... determinates of unethical decision behaviour: an experiment”, Journal of Applied Psychology, Vol. 63 No. 4, pp. 451-7. Hunt, S. and Vitell, S. (1986), “A general theory of marketing ethics”, Journal of...

Ngày tải lên: 23/03/2014, 10:20

14 506 0
Báo cáo khoa học: "A Logic of Semantic Representations for Shallow Parsing" pdf

Báo cáo khoa học: "A Logic of Semantic Representations for Shallow Parsing" pdf

... scope of the two quantifiers. Each of these solved forms now stands for a separate class of models; for instance, the first model in Fig. 1 is a model of (7), whereas the second is a model of (8). 3.4 ... form because τ is a tree; it is a solved form of ϕ by construction. Proposition 3. Every RMRS ϕ has only a finite number of solved forms, up to renaming of vari- ables. Proof. Up to renaming of ... of choices for the subsets S  in condition 2 of Def. 7, and there is only a finite set of choices of new dom- inance atoms that satisfy condition 3. Therefore, the set of solved forms of ϕ is finite. 456 follows: τ,...

Ngày tải lên: 31/03/2014, 20:20

9 312 0
Bloomberg Press 2005 Practice Made Perfect The Discipline of Business Management for Financial Ad_6 pdf

Bloomberg Press 2005 Practice Made Perfect The Discipline of Business Management for Financial Ad_6 pdf

... PREENING OF STAFF: PROFESSIONAL DEVELOPMENT 95 staff. One of the main reasons people give for leaving firms is that the work was not challenging enough. There are any number of reasons for this; ... the performance standards that must be met in order for other candidates within or outside the organization to grow into the specific position. These performance expectations will also form the ... life R —respect for others The concept encourages both professional and personal develop- ment, and we find these characteristics form the building blocks for a dynamic organization. To create...

Ngày tải lên: 20/06/2014, 18:20

20 230 0

Bạn có muốn tìm thêm với từ khóa:

w