Ngày tải lên: 28/04/2014, 10:06
static and dynamic neural networks from fundamentals to advanced theory
Ngày tải lên: 03/06/2014, 02:13
INTER-SYMBOL INTERFERENCE CANCELLATION FOR GSM SYSTEM USING NEURAL NETWORKS EQUALIZER
Ngày tải lên: 03/09/2012, 15:54
Tổng quan Neural networks
... loại và điều khiển, Neural Networks đều có thể ứng dụng được. Sự thành công nhanh chóng của mạng Neural Networks có thể là do một số nhân tố chính sau: N • Năng lực : Neural Networks là những ... Đình Chiến Phần 3_Chương 2 : Mô hình Neural Networks CHƯƠNG 2 MÔ HÌNH MẠNG NEURAL NETWORKS Mô hình mạng Neural tổng quát có dạng như sau : Ngày nay mạng Neural có thể giải quyết nhiều vấn đề ... GVHD : Ths Hoàng Đình Chiến Phần 3_Chương 1 : Tổng quan Neural Networks CHƯƠNG 1 TỔNG QUAN NEURAL NETWORKS 1. GIỚI THIỆU CHUNG eural Networks trong một vài năm trở lại đây đã được nhiều người...
Ngày tải lên: 03/09/2012, 15:54
Tài lieeuk tham khảo Ứng dụng bộ cân bằng dùng NEURAL NETWORKS triệt nhiễu giao thoa kí tự trong hệ thống GSM
... 0-13-079542-9 [18] Bart Kosko, Neural Networks for Signal processing, ISBN 0-13-614694-5 [19] Tarun Khanna, Foundations of Neural Networks, ISBN 0-201-50036-1 [20] Matlab_ The language of Technical ... Ứng dụng bộ cân bằng dùng Neural Networks triệt nhiễu giao thoa ký tựï trong hệ thống GSM [16] Edwin Johnes, Digital Transmision, ISBN ... McCord Nelson_W.T.Illingworth, A practical Guide to Neural. [22] A.A.R. Townsend, Digital Line-of-sight Radio links. [23] NXB Thống kê, Mạng Neural Nhân tạo. Lê Thanh Nhật-Trương Ánh Thu 31 GVHD...
Ngày tải lên: 03/09/2012, 15:55
Ứng dụng bộ cân bằng dùng NEURAL NETWORKS triệt nhiễu giao thoa kí tự trong hệ thống GSM
Ngày tải lên: 03/09/2012, 15:59
Neural Networks (and more!)
... database and the eventual data will degrade the neural network's performance (Murphy's law for neural networks) . Don't try to second guess the neural network on this issue; you can't! ... close to the main topic of this chapter, the neural network. Neural Network Architecture Humans and other animals process information with neural networks. These are formed from trillions of ... common to hear neural network advocates make statements such as: " ;neural networks are well understood." To explore this claim, we will first show that it is possible to pick neural network...
Ngày tải lên: 13/09/2012, 09:50
Estimation of Proper Strain Rate in the CRSC Test Using a Artificial Neural Networks
... ARTIFICIAL NEURAL NETWORK MODEL Neural networks are computer models that mimic the knowledge acquisition and organization skills of the human brain. Since, the characteristics of a neural network ... Philadelphia, pp 254-271. Jingsheng, SJ, Ortigao, AR, and Junli, B (1998). "Modular Neural Networks for Predicting Settlement during Tunneling," J. Geotech. ASCE, Vol 124, No 5, ... Ellis, GW (1992). " ;Neural network modeling of the mechanical behavior of sand," Proc. 9 th Conf. ASCE, New York, pp 421-424. Garson, GD (1991). "Interpreting neural- network connection...
Ngày tải lên: 22/03/2013, 15:01
Tài liệu Kalman Filtering and Neural Networks - Chapter 1: KALMAN FILTERS doc
... [1] for the 1 Kalman Filtering and Neural Networks, Edited by Simon Haykin ISBN 0-471-36998-5 # 2001 John Wiley & Sons, Inc. Kalman Filtering and Neural Networks, Edited by Simon Haykin Copyright ... mean-square (variance) estimator of the state of a linear dynamical system. The Kalman filter, summarized in Table 1.1, applies to a linear dynamical system, the state space model of which consists ... derivation of the Kalman filter follows. 1.3 KALMAN FILTER Suppose that a measurement on a linear dynamical system, described by Eqs. (1.1) and (1.3), has been made at time k. The requirement is...
Ngày tải lên: 13/12/2013, 13:15
Tài liệu Kalman Filtering and Neural Networks P2 doc
... KALMAN FILTER TRAINING phenomenon, is particularly troublesome for training of recurrent neural networks and=or neural network controllers, where the temporal order of presentation of data during ... EKF training of recurrent neural networks to be an enabler for developing effective solutions to these problems. Figure 2.7 provides a diagrammatic representation of these five neural network applications ... applications. We have found that EKF methods have enabled the training of recurrent neural networks, for both modeling and control of nonlinear dynamical systems. The sequential nature of the EKF provides...
Ngày tải lên: 14/12/2013, 13:15
Tài liệu Kalman Filtering and Neural Networks P3 doc
... 4032–4044, (1999). [10] R.P.N. Rao and D.H. Ballard, ‘ Dynamic model of visual recognition predicts neural response properties in the visual cortex’’ , Neural Computation, 9(4), 721–763 (1997) [11] R.P.N. ... Visual cortex cell types and connections’’, in M.A. Arbib, Ed., Handbook of Brain Theory and Neural Networks, Cambridge, MA: MIT Press, 1995. [3] J.M. Hupe ´ , A.C. James, B.R. Payne, S.G. Lomber, ... Oram and D.I. Perrett, ‘‘Modeling visual recognition from neurobio- logical constraints’’ , Neural Networks, 7, 945–972 (1994). [5] M. Mishkin, L.G. Ungerleider and K.A. Macko, ‘‘ Object vision...
Ngày tải lên: 14/12/2013, 13:15
Tài liệu Kalman Filtering and Neural Networks P4 doc
... deviation in 83 Kalman Filtering and Neural Networks, Edited by Simon Haykin ISBN 0-471-36998-5 # 2001 John Wiley & Sons, Inc. Kalman Filtering and Neural Networks, Edited by Simon Haykin Copyright ... initialization, B ¼ priming phase and C ¼ auto- nomous phase. 106 4 CHAOTIC DYNAMICS 4.3 DYNAMIC RECONSTRUCTION The attractor of a dynamical system is constructed by plotting the evolution of the state ... original dynamics in the reconstructed signal. Figure 4.12 Figure 4.10 Training MSE versus epochs for the Lorenz series. 100 4 CHAOTIC DYNAMICS [9] S. Haykin and S. Puthusserypady, ‘‘Chaotic dynamics...
Ngày tải lên: 14/12/2013, 13:15
Tài liệu Kalman Filtering and Neural Networks P5 pdf
... L.E. Atlas, ‘ Recurrent neural networks and robust time series prediction,’’ IEEE Transactions on Neural Networks, 5(2), 240–254 (1994). [15] S.C. Stubberud and M. Owen, ‘‘Artificial neural network ... v k drives the dynamical system, observation noise is given by n k , and u k corresponds to observed exogenous inputs. The model structure, FðÁÞ and HðÁÞ, may represent multilayer neural networks, ... (a ), the series generated by a neural network trained on x k (b), the series generated by a neural network trained on y k (c ), and the series generated by a neural network trained on y k ,...
Ngày tải lên: 14/12/2013, 13:15