a framework for evaluating systems initiatives

A Testbed for Evaluating VoIP Service

A Testbed for Evaluating VoIP Service

... interfaces of the IP-PSTN GWs (or VoIP GWs) under test. The VoIP gateway A (GW -A) and gateway B (GW-B) are the near-end (or call-originating) and far-end (call-terminating) GWs. Usually GW -A and GW-B ... can be described as follows. In a telephony/conversation session, there are two or more interacting players: for example, a calling party, a called party, a local switch, and a voice response unit ... telephone conversation. 66 A TESTBED FOR EVALUATING VoIP SERVICE 5 A TESTBED FOR EVALUATING VoIP SERVICE1 A new service must be prototyped and tested in a laboratory environment before massive deployment....

Ngày tải lên: 30/09/2013, 07:20

9 236 0
Overview - a framework for reproductive ethics

Overview - a framework for reproductive ethics

... had reasonable answers to these central questions, then we would have what I am calling a framework for dealing with these issues. A framework is just a starting place. For any particular case ... variation among cases. For a given type of ethical conXict, there usually are a number of morally relevant ways in which it can vary from one case to the next, and these variations can make a ... self-conscious; have been born; and are similar in appearance to the paradigm of normal adult human beings. Although some of these characteristics have been put forward as a suYcient condition for normative...

Ngày tải lên: 01/11/2013, 08:20

22 368 0
Tài liệu INDIGENOUS KNOWLEDGE FOR DEVELOPMENT: A FRAMEWORK FOR ACTION pptx

Tài liệu INDIGENOUS KNOWLEDGE FOR DEVELOPMENT: A FRAMEWORK FOR ACTION pptx

... successful exchange of IK. Application: Transfer of the Washambaa agricultural system to Rwanda adaptation and re-transfer. The Washambaa of the Usambara Mountains in Tanzania had developed a land use ... lessons for the development process: Application: Transfer of the Washambaa agricultural system to Rwanda, adaptation, and re-transfer. The Washambaa of the Usambara Mountains in Tanzania had ... farmers Source: GTZ various reports 1980 - 90 Application: Transfer of the Washambaa agricultural system to Rwanda adaptation and re- transfer. The Washambaa of the Usambara Mountains in Tanzania...

Ngày tải lên: 16/02/2014, 10:20

49 492 0
Tài liệu Towards a framework for the study of the neural correlates of aesthetic preference pdf

Tài liệu Towards a framework for the study of the neural correlates of aesthetic preference pdf

... (2004); K & Z: Kawabata and Zeki (2004); C-C et al: Cela-Conde and colleagues (2004). 382 M. Nadal et al. the neuroanatomical correlates of aesthetic preference for paintings” (Vartanian and Goel, ... (dorsolateral), Kawabata and Zeki (2004) (orbitofrontal) and Vartanian and Goel (2004) (anterior cingulate) was associated with positive ratings. Additionally, in the study by Cela-Conde et al. ... de les Illes Balears, Crta Valldermossa s/n, km 7,5, Palma de Mallorca 07122, Spain Received 21 March 2006; accepted 10 March 2007 Abstract—Aiming to provide a tentative framework for the study...

Ngày tải lên: 19/02/2014, 17:20

19 527 0
Tài liệu Báo cáo khoa học: "A Framework for Syntactic Translation" docx

Tài liệu Báo cáo khoa học: "A Framework for Syntactic Translation" docx

... Massachusetts Institute of Technology, Cambridge, Massachusetts Adequate mechanical translation can be based only on adequate structural descrip- tions of the languages involved and on an adequate ... take the form of a program written in a pseudo code, program- mable on a general-purpose computer. Earlier estimates 9 that the amount of storage neces- sary for syntactic information may ... Syntactic Translation 63 A Framework for Mechanical Translation Figure 1 knowledge of the language and are intended not to include any details of the programming or, more particularly,...

Ngày tải lên: 19/02/2014, 19:20

7 509 1
Tài liệu Báo cáo khoa học: "A Framework for Processing Partially Free Word Order" ppt

Tài liệu Báo cáo khoa học: "A Framework for Processing Partially Free Word Order" ppt

... interpreted as a metagrammar, i.e a grammar for generating the actual CF-PS grammar. A GPSG can be defined as a two-leveJ grammar containing a metagrammar and an object grammar. The object grammar combines ... German belongs to the class of natural-language phenomena that require a closer interaction of syntax and pragmatics than is usually accounted for in formal linguistic frameworks. Computational ... Semantics (Barwise and Perry. 1981) narrows the gap between .,,.'mantics and pragmatics. If we as.~ume that a language generation system should be able to generate all grammatical word...

Ngày tải lên: 21/02/2014, 20:20

7 538 0
Women, Ageing and Health: A Framework for Action pot

Women, Ageing and Health: A Framework for Action pot

... src=" 3A8 YddQCBNJgWoScGWEnGTGbtaLvWZyeD1Uecz0DBnzvkLAoVqFeAqpTy2UsA4nc7s0LjmVjlNCiMVKZYijVCVQSDQsil+4tGrd2ElHSEuOp/PZOJlry9rFXz93PrGfv80AQAAn+7vv/rel3CxKr4CAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAACAz9DvKwAAgK9VdbxRGb3Xbm2e7G7rEwAA4MpUxupDD56klFJa3H80cjOu2X9tAADwVarWJvPtgakFfQIAAKBPAACAgnZrU58AAADXgvXxAADAFYilJsUBk6P1pcpYPZajHG8s6xMAAOCLN8ng9GK+52ClPKErHo3/f7S+dD03HdYnAABwU8WoSE6Oo/WlruGRt8VysrudtxgemFqo1ibyq67ViIo+AQCAa10gg9OLh6uNM++v1ibbrc2DlZmPHwmpjNWPN5aPN96GyuD04uD04nmVMjTbbLe2LjNgrI8HAIBrWiZDs83hubWj9aXSQwNTC8Nzaymlg5WZw9XGeXHSfX9ehRKON5b3H40crMxUaxN3Hr6sjNVLzz9cbQxOLw7NNrsf+kKMnwAAwHWMkyiQo/WlYmbkYZNPGjNJp3O62q2tMzPmcLURzdNubZbGag5WZobn1obnPvkTf+Yv7r97AAC4nnHSbm0W51bl+/cfjfRIhYGphaHZZveB8bFSZXB68c7Dl92PxlhKSqk0WnKyu32wMpNSGp5bu4RRFH0CAADXNE6KQxkx1ysmdPXIkjsPX8YAS+9PiVlb3fcfrjbara3hubW+0XtXkij6BAAArlh1/F1y3PrmDymlo/WlYofc+vbPfbdHXz2udw+bVMcbtx486c6Sk73nKaVOpxM/xvDI4dP5Nztvs6Ramxz+YSs6pG/0Xr6G443lV4/rt/7130uJ8upx/eTFs1vf/CHur443ik/QJwAA8DWojNUHfj0ft4dmm5W79w9WZorTugamFvr/+XcHf5zo7D0vvfDOw5ed/Rf9441 2a7 O4jP5gZaa900wp9fX1FV/S3mm+fjofgyEppcrd+7e+WU4p3f5xuzJ6L4+NdPaed/7vf2//uF0cLensPT/440Tn1V68pDJ6L27oEwAA+HoMz63FsvXYXCuWoQ9MLUQbxIL4V4/rpRUjsTXw/qORGDPJp6C0W5u9V6eklE52t/Pp8vHyo/WlwenFmFcWmXS0vhQr40sTumJUJzYprtYmu9ex6BMAALipSn/9R1oMzTartYmT3e1Yi3K0vtTZe368sZxjIJaORCoUz4yPJSsDUwsDUwt3Hr4sfVBunpRScSOvYmPEpsbxiZEx+f3zmvvixLPip+sTAAC42d5bMbK7HVO2qrXJmKw1OL1Y3MIrEiX6Ie4spkW8JNIlb8ZVfPN 2a7 Nam4zNu/L4SUkM5uThl0iR+JQYY4ndveIJ8YkXu2Le+ScAAHDFIjaGZpuRK3mKV7U2WcqMOMOke/pWu7VZrU2ct7VXTpST3e3jjeWYM/b +a9 9lUkRR/oij9aU4FyV28eo+C6Vam7zAc1GMnwAAwJUpzp4qxkk8VDo5Po+cxIBGZazebm0erMzE4vjecVIKldKPpeGUvBAlPxrXWdpoOLKqWpu4wC9EnwAAwGUrzstqtzZjZXzERsRDTMEqHc6Y0yLfH8viD1cbnzSCkVsoPr10I9x68CTfPlxtVGuT+QJyoqTC2MtFLZTXJwAAcNnen161FROoipnRPXgyPLdWGiEZnF784Jyuo/WlvFgllsjH+pZie8Q9h6uNYqL0jzeKC0ti8UnczokyNNs8b529PgEAgJshbxycM6N0VHwMnhSHRKrjjXxoSfFNinlwpjiNMbJkeG6ttN3WwcrMwNRCtEdlrH642ihGUXGWV4yT5GuORKnWJouTuy5kopc+AQCAS5VPLEmns6qK22SdFst74VEZvVfMlVjgfrjaKG46XBJNcvvH7cHpxe5dgGMuWUwqO95YzsMjsfFXXpQfu4GlwvZf+f6cKHmrseKwjD4BAICbp93aynOlcnukwgqTM0WcxO3SuSh5Etd5J5PEwYvx8jxK033YYgy8FEd12q2t/J7x5DzR6wLZXxgAAK5MPsYkD0TEmEbxOQNTCyd7z/OPlbF6aXQlEqVam4hhkO5xjHjn4pyx4mr7OM8k9g7OzzlaX+q7PZKPOolPiWlgJ7vb8UHx5AvcXDgZPwEAgKsVk7VyGHRP7qrWJto7zfzj8Nxa9+jKmXFytL706nF9/9HI8cby8cZyMU6Ka0tyoqTCwv3O3vOj9aVS6uQpXnEBscvwBX8b/kEAAMBliuGRXAJxo3gWeyk/irlSGauX9vVKKcUa91Q4jb7d2owsGZxevPPwZSosys/n08dgSDw/4iTWk+RZXie726VJYsUpXnnZiT4BAICbqdKf3j8esTreqNYmD5/Ox53dU7NKk7sGfvP9m8JYSkqpb/Re5e79k93tgd98/7YrXjw7XG1Uxxspper938adw3Nr1fFGDJsMTi/2jzeqtcnhubU7D192Xr3MQfJmp1m5ez+/eemzilcSq+qrtcn4oO4n6xMAALjeBm7Hf+YxkKEHT9qtzeL0rdLwSGlyV9/tkU4hElJK/eON47/9KW7kTqiM1YcePEkp9fX15WcOFY5cLEZI/3jj3ZjJi2cnL569C5IXz947SnKnmQo7Ix9vLLdbmwO/nn/749/+VPwd9QkAAFx3p+eWbObbh6uNylg9bncfIVIcUeleGZ9SGpxejHUgeVV9tTYR2wF/5CXFBsSx8Vcqnx15xpvEJeWLLx4tn1LqG/pHfQIAADdD/PWfF6OXDg/pfYRI96N5V+JqbTKnS7U2OTTb7H2u/JkX1m5txv/lO3vszZWXr+SNv04L47O2CNYnAABwefJoQyzeiKXwPbKkezV8MU7yC6u1ieKq+kiUT7qww9VGbBbc+0z6Yr0UWytedd5hkR/P+ScAAHCp8tHvMZur9Dd9tTaR0kK+XUyX09lfC2c9NFkZq8dQRr6n+Lb7j0YGphbO226r3dosnl5frU3kSim9JA/UlPbyijoanF5889//qU8AAOAmePM6t0SccpirI49+tFtb+fbxRhqYWigMjCzkZw5Ov4ztgHMkDM+tHazM7D8aKY6rZEOzzXZr67xHS5PBShsc9zjMPi4vnhDjQp3jV5/zDZnfBQAAl6X9Ov6zODPqQ2tOJs74I/50NXypHIbn1gamFg5XG/uPRvLEsHw0yuD04tBs82h9qcecsfShI016PPr2oeMDfQIAADdDroXiyes9giHXSxwzH42RF9bnl+dlIbFsfWi2eWbYxJknsS9w8f47D1/GMY4lPdaT5Ald+fLeXqrxEwAAuClyG8Rf86UA 6A6 VHBLFhSXx2tOF6ZvHG8uHq42DlZnCq7ZKU7b2H43ktxqYWigtgm+3NvPLS9fQvcXwmdO9IlR6j8zoEwAAuHbynsJn/sVfGvdot7YqY/V8Rnvhae/2AYvIOdndzo3RnRCVsXqxWIrVcbAyE5t3pbMW6xe3GC6O+ZRqpFqbjFLSJwAAcENUb0VIRB5EDBTPakxnLUc5c8nH4PRilMPJ7nYxaQ5WZs47tKRUF2c+v3uf4lIUdb9VPtjx8wdP9AkAAFyi9us4luRwtdFubUZXxFSriJDcBpWxeqwJiaMbhx486fGuR+tLQ7PN4iHu733m6XSyPEOs3dqM0mi3NkvDI8V5X5WxendyFAd/8jvHepgehznqEwAAuI5K5zNWaxP5r/w8t2pgaiGmS33gT/nTQYw4VLFam+wuhFeP69XaZHROjpOT3e34sTQ8EkfIFy+1dA3xqrwUPn9cntn1qYdC6hMAALhKR+tLsQvwye52xEMpKo7Wl/rHGyd7zw9XG4dP509ePEspdTqd7re69c0f3obEeOPNTvPNTnNgaiGvVBmYWhj+YWv4h7enKMYTDp/OH//Xk+Ef3g2S5OdXxxvt1la+mL5/+KfK3fvvTf0ab6SUjjeWI076Ru+llE5ePOsfb7z+60JKafiHrd5nz+sTAAC4XvK2vJWxemfveXHTrfyEyt37nf0XKaX2TvPNTjOl1NfX1/1WnVd70SHtnWZn73ln7/nxxnJn/0UsCBmcXqzcvd/Ze360vrT/aOT10/mTF8+GHjwZevCkcvd+fpOYOVYZqw/8er648qT/X2ZfP50vftzAr+eL0736xxuRPa//+m+dvedDs83K3fvWxwMAwA0Tf+UPz63FKfL5/jwF62h9Kd/uPqskq9Ymh2abpSQ42d0uTrs6fDofLy9O8SqJmCntR1zOhrF6tTYZn1X8xOON5ZPd7TiT/oMT0vQJAABcOzk58oL1kli/npeXHK42Xj2un5coZ+7Kdfo+W7G8vvf1lE57jBo52Xve+zmldInr1CcAAHDz5L/1iwvK852xAXFxuKPzfi0UxThMd+F85JXEyYyD04t5dX4cVN/eaZYKpN 3a7 P6gylg9Kqt7opo+AQCAmyGfpdg9AHLn4cvY2Lf00MHKzJnVEZPBusuh9Pweh5PE9l/5TbrneuXtg7sHfPJGwxeyubA+AQCAK06U0gBIjJyc7G7HTl/F58epKTHicbS+dLAys/9o5Hhj+XC1MTi9mI9ACaWdwaq1iTOHOGJf4+ON5RhFGZptlkomNjs+3lgemFooBVLeB/lCZnbpEwAAuBr5LMVohuJUrjjJJJ0uQy+dKJI38I2F6fn+w9VGDLkMzTZjplZp3XyconjmCEw888wBkJjrlS+ytH1wvGGOkx4rYfQJAABcX3kyVSRKBEmxUqIx4qH8d38MdMRoSXcMnOxux6OxvL40nBKjIt3nk+RiiZGT0ptHgZzsbufVKblDSnHy+Scz6hMAALgaMXcr/qaPRMmdcHqc/EQ8FM/sG70XcRLPyRO6znzzHCrFIZHjjeVIlNL0rXZrqzJWjziJ58eb943ei/fvnrsVNRUxE7ly5+HLdM4IjD4BAIDrLsKjWpuM1fB5bUn+Kz9vChybEd/+cbs0XysmdMXLP/5zu89PjA2ISzFzuNoYevCkWpvMMRNjO/HyWMoStwemFmKRzEUtQdEnAABwBYqnoMRcrPwnflRBhMfA1MLhauPkxbPu0ZKT3e39RyPFNSe9xSbC76912cyl8V4kjNUrd+/n9fSlBMojLUOzzXi3i9pcWJ8AAMCVyWMm1drk8Nxabox8Z/w4NNs8fDofHXJm50TYRKX0CJXSEMfBykxp2CTXyPDcWj7kPhUmdOUuijldcf/BysxFbS6sTwAA4FokSkop7xEc5zPGEpScBzFGUVr1XqqUPOfqzsOXxalfkRORN7E38f6jkTOjIuZrHa0vvdlp5kqJKymupI9uieGXC4yTlFLf2O+f+mcBAAA/w99/9f2FvE9s45sHTPK5KPuPRlJKdx6+fLPTfP10PtogloV0T8o6060HT05ePPuYJ+driOS49eBJ/3gjX0Bs1ZVPi08pffw1fJJ+/6oAAOBqxfr4vtF7/eON/vHG8Nzam51m1MXrp/OHT+dvffvn6nijvdOMpw1OLw7/sPVmp/lmp9nZe97rrTudD356dbwxOLWQUnqz04w5YH2j96r3f/t28GS8kVLqvHo5/MNW5e79+ND2ztuZZn2j9z5wAZ/I+AkAAPxMFzJ+MjTbbLe2imMRlbF6HKeYTld3RBvEaEZ+Tgx3tFubpZcX9Rg/KQ7alKZpDc02+26PHvxxIqUUewe3W5t5WXx++fDcmvldAADwVfVJOp211V 0a+ QzH6nhj6MGT7ilVxZKJl8dxiu/+3O 8a3 4gF9MWXdL9nrDw53ljubqfUNRPsYr9SfQIAAFfcJzlR8o9H60ul0jjvtMTuUAnRHnG7WpsovnnvIZe4kleP66WwKX3El4gTfQIAANeiT9LpwEXpztwSHz+fKkLizIc+uKI9PiVWw+e36s6b0lwvfQIAAF9bn4SBqYVSD6SUTl48e7PTbLc2B6cXL+qk9jPF4MnByszAb77vH290x9KXKxN9AgAA165PiqGSuqZmpS82sSr1HMBJHzH2ok8AAOCr7ZMeFRF9cuZISzpreUme8VVcoJLPgy8tdLlazj8BAIBrJ0dIt1ikft4Kk3hCPHq8sTwwtVBskqLC/edu/1W8npTSJWSMPgEAgOsoNuzKe3C9XxTnypmRTo8uSYWhknTWhLH3q+bsj/hCp8XrEwAAuAHiRPkeox/FckjvLw7J55McrS/lA+bzAMjxxrvXFs9C6fH+l1MmwfoTAAD4mS5t/UmERFGPiVjFDYI/eH+Pj7jMLNEnAABwY/rkI+Xdgc9Llxgq+aI7FH+min9VAADwFegdJ+l0zlg8M6Z76RMAAODiDUwt9N0effW4/sEttg5XG+3W1vDcWt/ovWv4i5jfBQAAP9N1m9/1FTB+AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAAfF36Op2ObwEAALgOjJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAgOuh31dw4Wrf/eRLAAD4HK2/fOtL+GUyfgIAwLXjf/DVJwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAADgF6HfV/AltP7yrS/hS6t999PN/Z5v9MX73X2lfgW/o+/Wr3w5v6Z/3r9Mxk8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAAC4XH2dTse3cLFq3/3kSwAA+Bz/s/K7/mqf7+EXqN9X8CW0/vKtL+ESOvDmfs83+uL97r5Sv4Lf0XfrV/Zr8uWY3wUAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAA ... src=" 3A8 YddQCBNJgWoScGWEnGTGbtaLvWZyeD1Uecz0DBnzvkLAoVqFeAqpTy2UsA4nc7s0LjmVjlNCiMVKZYijVCVQSDQsil+4tGrd2ElHSEuOp/PZOJlry9rFXz93PrGfv80AQAAn+7vv/rel3CxKr4CAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAACAz9DvKwAAgK9VdbxRGb3Xbm2e7G7rEwAA4MpUxupDD56klFJa3H80cjOu2X9tAADwVarWJvPtgakFfQIAAKBPAACAgnZrU58AAADXgvXxAADAFYilJsUBk6P1pcpYPZajHG8s6xMAAOCLN8ng9GK+52ClPKErHo3/f7S+dD03HdYnAABwU8WoSE6Oo/WlruGRt8VysrudtxgemFqo1ibyq67ViIo+AQCAa10gg9OLh6uNM++v1ibbrc2DlZmPHwmpjNWPN5aPN96GyuD04uD04nmVMjTbbLe2LjNgrI8HAIBrWiZDs83hubWj9aXSQwNTC8Nzaymlg5WZw9XGeXHSfX9ehRKON5b3H40crMxUaxN3Hr6sjNVLzz9cbQxOLw7NNrsf+kKMnwAAwHWMkyiQo/WlYmbkYZNPGjNJp3O62q2tMzPmcLURzdNubZbGag5WZobn1obnPvkTf+Yv7r97AAC4nnHSbm0W51bl+/cfjfRIhYGphaHZZveB8bFSZXB68c7Dl92PxlhKSqk0WnKyu32wMpNSGp5bu4RRFH0CAADXNE6KQxkx1ysmdPXIkjsPX8YAS+9PiVlb3fcfrjbara3hubW+0XtXkij6BAAArlh1/F1y3PrmDymlo/WlYofc+vbPfbdHXz2udw+bVMcbtx486c6Sk73nKaVOpxM/xvDI4dP5Nztvs6Ramxz+YSs6pG/0Xr6G443lV4/rt/7130uJ8upx/eTFs1vf/CHur443ik/QJwAA8DWojNUHfj0ft4dmm5W79w9WZorTugamFvr/+XcHf5zo7D0vvfDOw5ed/Rf9441 2a7 O4jP5gZaa900wp9fX1FV/S3mm+fjofgyEppcrd+7e+WU4p3f5xuzJ6L4+NdPaed/7vf2//uF0cLensPT/440Tn1V68pDJ6L27oEwAA+HoMz63FsvXYXCuWoQ9MLUQbxIL4V4/rpRUjsTXw/qORGDPJp6C0W5u9V6eklE52t/Pp8vHyo/WlwenFmFcWmXS0vhQr40sTumJUJzYprtYmu9ex6BMAALipSn/9R1oMzTartYmT3e1Yi3K0vtTZe368sZxjIJaORCoUz4yPJSsDUwsDUwt3Hr4sfVBunpRScSOvYmPEpsbxiZEx+f3zmvvixLPip+sTAAC42d5bMbK7HVO2qrXJmKw1OL1Y3MIrEiX6Ie4spkW8JNIlb8ZVfPN 2a7 Nam4zNu/L4SUkM5uThl0iR+JQYY4ndveIJ8YkXu2Le+ScAAHDFIjaGZpuRK3mKV7U2WcqMOMOke/pWu7VZrU2ct7VXTpST3e3jjeWYM/b +a9 9lUkRR/oij9aU4FyV28eo+C6Vam7zAc1GMnwAAwJUpzp4qxkk8VDo5Po+cxIBGZazebm0erMzE4vjecVIKldKPpeGUvBAlPxrXWdpoOLKqWpu4wC9EnwAAwGUrzstqtzZjZXzERsRDTMEqHc6Y0yLfH8viD1cbnzSCkVsoPr10I9x68CTfPlxtVGuT+QJyoqTC2MtFLZTXJwAAcNnen161FROoipnRPXgyPLdWGiEZnF784Jyuo/WlvFgllsjH+pZie8Q9h6uNYqL0jzeKC0ti8UnczokyNNs8b529PgEAgJshbxycM6N0VHwMnhSHRKrjjXxoSfFNinlwpjiNMbJkeG6ttN3WwcrMwNRCtEdlrH642ihGUXGWV4yT5GuORKnWJouTuy5kopc+AQCAS5VPLEmns6qK22SdFst74VEZvVfMlVjgfrjaKG46XBJNcvvH7cHpxe5dgGMuWUwqO95YzsMjsfFXXpQfu4GlwvZf+f6cKHmrseKwjD4BAICbp93aynOlcnukwgqTM0WcxO3SuSh5Etd5J5PEwYvx8jxK033YYgy8FEd12q2t/J7x5DzR6wLZXxgAAK5MPsYkD0TEmEbxOQNTCyd7z/OPlbF6aXQlEqVam4hhkO5xjHjn4pyx4mr7OM8k9g7OzzlaX+q7PZKPOolPiWlgJ7vb8UHx5AvcXDgZPwEAgKsVk7VyGHRP7qrWJto7zfzj8Nxa9+jKmXFytL706nF9/9HI8cby8cZyMU6Ka0tyoqTCwv3O3vOj9aVS6uQpXnEBscvwBX8b/kEAAMBliuGRXAJxo3gWeyk/irlSGauX9vVKKcUa91Q4jb7d2owsGZxevPPwZSosys/n08dgSDw/4iTWk+RZXie726VJYsUpXnnZiT4BAICbqdKf3j8esTreqNYmD5/Ox53dU7NKk7sGfvP9m8JYSkqpb/Re5e79k93tgd98/7YrXjw7XG1Uxxspper938adw3Nr1fFGDJsMTi/2jzeqtcnhubU7D192Xr3MQfJmp1m5ez+/eemzilcSq+qrtcn4oO4n6xMAALjeBm7Hf+YxkKEHT9qtzeL0rdLwSGlyV9/tkU4hElJK/eON47/9KW7kTqiM1YcePEkp9fX15WcOFY5cLEZI/3jj3ZjJi2cnL569C5IXz947SnKnmQo7Ix9vLLdbmwO/nn/749/+VPwd9QkAAFx3p+eWbObbh6uNylg9bncfIVIcUeleGZ9SGpxejHUgeVV9tTYR2wF/5CXFBsSx8Vcqnx15xpvEJeWLLx4tn1LqG/pHfQIAADdD/PWfF6OXDg/pfYRI96N5V+JqbTKnS7U2OTTb7H2u/JkX1m5txv/lO3vszZWXr+SNv04L47O2CNYnAABwefJoQyzeiKXwPbKkezV8MU7yC6u1ieKq+kiUT7qww9VGbBbc+0z6Yr0UWytedd5hkR/P+ScAAHCp8tHvMZur9Dd9tTaR0kK+XUyX09lfC2c9NFkZq8dQRr6n+Lb7j0YGphbO226r3dosnl5frU3kSim9JA/UlPbyijoanF5889//qU8AAOAmePM6t0SccpirI49+tFtb+fbxRhqYWigMjCzkZw5Ov4ztgHMkDM+tHazM7D8aKY6rZEOzzXZr67xHS5PBShsc9zjMPi4vnhDjQp3jV5/zDZnfBQAAl6X9Ov6zODPqQ2tOJs74I/50NXypHIbn1gamFg5XG/uPRvLEsHw0yuD04tBs82h9qcecsfShI016PPr2oeMDfQIAADdDroXiyes9giHXSxwzH42RF9bnl+dlIbFsfWi2eWbYxJknsS9w8f47D1/GMY4lPdaT5Ald+fLeXqrxEwAAuClyG8Rf86UA 6A6 VHBLFhSXx2tOF6ZvHG8uHq42DlZnCq7ZKU7b2H43ktxqYWigtgm+3NvPLS9fQvcXwmdO9IlR6j8zoEwAAuHbynsJn/sVfGvdot7YqY/V8Rnvhae/2AYvIOdndzo3RnRCVsXqxWIrVcbAyE5t3pbMW6xe3GC6O+ZRqpFqbjFLSJwAAcENUb0VIRB5EDBTPakxnLUc5c8nH4PRilMPJ7nYxaQ5WZs47tKRUF2c+v3uf4lIUdb9VPtjx8wdP9AkAAFyi9us4luRwtdFubUZXxFSriJDcBpWxeqwJiaMbhx486fGuR+tLQ7PN4iHu733m6XSyPEOs3dqM0mi3NkvDI8V5X5WxendyFAd/8jvHepgehznqEwAAuI5K5zNWaxP5r/w8t2pgaiGmS33gT/nTQYw4VLFam+wuhFeP69XaZHROjpOT3e34sTQ8EkfIFy+1dA3xqrwUPn9cntn1qYdC6hMAALhKR+tLsQvwye52xEMpKo7Wl/rHGyd7zw9XG4dP509ePEspdTqd7re69c0f3obEeOPNTvPNTnNgaiGvVBmYWhj+YWv4h7enKMYTDp/OH//Xk+Ef3g2S5OdXxxvt1la+mL5/+KfK3fvvTf0ab6SUjjeWI076Ru+llE5ePOsfb7z+60JKafiHrd5nz+sTAAC4XvK2vJWxemfveXHTrfyEyt37nf0XKaX2TvPNTjOl1NfX1/1WnVd70SHtnWZn73ln7/nxxnJn/0UsCBmcXqzcvd/Ze360vrT/aOT10/mTF8+GHjwZevCkcvd+fpOYOVYZqw/8er648qT/X2ZfP50vftzAr+eL0736xxuRPa//+m+dvedDs83K3fvWxwMAwA0Tf+UPz63FKfL5/jwF62h9Kd/uPqskq9Ymh2abpSQ42d0uTrs6fDofLy9O8SqJmCntR1zOhrF6tTYZn1X8xOON5ZPd7TiT/oMT0vQJAABcOzk58oL1kli/npeXHK42Xj2un5coZ+7Kdfo+W7G8vvf1lE57jBo52Xve+zmldInr1CcAAHDz5L/1iwvK852xAXFxuKPzfi0UxThMd+F85JXEyYyD04t5dX4cVN/eaZYKpN 3a7 P6gylg9Kqt7opo+AQCAmyGfpdg9AHLn4cvY2Lf00MHKzJnVEZPBusuh9Pweh5PE9l/5TbrneuXtg7sHfPJGwxeyubA+AQCAK06U0gBIjJyc7G7HTl/F58epKTHicbS+dLAys/9o5Hhj+XC1MTi9mI9ACaWdwaq1iTOHOGJf4+ON5RhFGZptlkomNjs+3lgemFooBVLeB/lCZnbpEwAAuBr5LMVohuJUrjjJJJ0uQy+dKJI38I2F6fn+w9VGDLkMzTZjplZp3XyconjmCEw888wBkJjrlS+ytH1wvGGOkx4rYfQJAABcX3kyVSRKBEmxUqIx4qH8d38MdMRoSXcMnOxux6OxvL40nBKjIt3nk+RiiZGT0ptHgZzsbufVKblDSnHy+Scz6hMAALgaMXcr/qaPRMmdcHqc/EQ8FM/sG70XcRLPyRO6znzzHCrFIZHjjeVIlNL0rXZrqzJWjziJ58eb943ei/fvnrsVNRUxE7ly5+HLdM4IjD4BAIDrLsKjWpuM1fB5bUn+Kz9vChybEd/+cbs0XysmdMXLP/5zu89PjA2ISzFzuNoYevCkWpvMMRNjO/HyWMoStwemFmKRzEUtQdEnAABwBYqnoMRcrPwnflRBhMfA1MLhauPkxbPu0ZKT3e39RyPFNSe9xSbC76912cyl8V4kjNUrd+/n9fSlBMojLUOzzXi3i9pcWJ8AAMCVyWMm1drk8Nxabox8Z/w4NNs8fDofHXJm50TYRKX0CJXSEMfBykxp2CTXyPDcWj7kPhUmdOUuijldcf/BysxFbS6sTwAA4FokSkop7xEc5zPGEpScBzFGUVr1XqqUPOfqzsOXxalfkRORN7E38f6jkTOjIuZrHa0vvdlp5kqJKymupI9uieGXC4yTlFLf2O+f+mcBAAA/w99/9f2FvE9s45sHTPK5KPuPRlJKdx6+fLPTfP10PtogloV0T8o6060HT05ePPuYJ+driOS49eBJ/3gjX0Bs1ZVPi08pffw1fJJ+/6oAAOBqxfr4vtF7/eON/vHG8Nzam51m1MXrp/OHT+dvffvn6nijvdOMpw1OLw7/sPVmp/lmp9nZe97rrTudD356dbwxOLWQUnqz04w5YH2j96r3f/t28GS8kVLqvHo5/MNW5e79+ND2ztuZZn2j9z5wAZ/I+AkAAPxMFzJ+MjTbbLe2imMRlbF6HKeYTld3RBvEaEZ+Tgx3tFubpZcX9Rg/KQ7alKZpDc02+26PHvxxIqUUewe3W5t5WXx++fDcmvldAADwVfVJOp211V 0a+ QzH6nhj6MGT7ilVxZKJl8dxiu/+3O 8a3 4gF9MWXdL9nrDw53ljubqfUNRPsYr9SfQIAAFfcJzlR8o9H60ul0jjvtMTuUAnRHnG7WpsovnnvIZe4kleP66WwKX3El4gTfQIAANeiT9LpwEXpztwSHz+fKkLizIc+uKI9PiVWw+e36s6b0lwvfQIAAF9bn4SBqYVSD6SUTl48e7PTbLc2B6cXL+qk9jPF4MnByszAb77vH290x9KXKxN9AgAA165PiqGSuqZmpS82sSr1HMBJHzH2ok8AAOCr7ZMeFRF9cuZISzpreUme8VVcoJLPgy8tdLlazj8BAIBrJ0dIt1ikft4Kk3hCPHq8sTwwtVBskqLC/edu/1W8npTSJWSMPgEAgOsoNuzKe3C9XxTnypmRTo8uSYWhknTWhLH3q+bsj/hCp8XrEwAAuAHiRPkeox/FckjvLw7J55McrS/lA+bzAMjxxrvXFs9C6fH+l1MmwfoTAAD4mS5t/UmERFGPiVjFDYI/eH+Pj7jMLNEnAABwY/rkI+Xdgc9Llxgq+aI7FH+min9VAADwFegdJ+l0zlg8M6Z76RMAAODiDUwt9N0effW4/sEttg5XG+3W1vDcWt/ovWv4i5jfBQAAP9N1m9/1FTB+AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAAfF36Op2ObwEAALgOjJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAgOuh31dw4Wrf/eRLAAD4HK2/fOtL+GUyfgIAwLXjf/DVJwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAADgF6HfV/AltP7yrS/hS6t999PN/Z5v9MX73X2lfgW/o+/Wr3w5v6Z/3r9Mxk8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAAC4XH2dTse3cLFq3/3kSwAA+Bz/s/K7/mqf7+EXqN9X8CW0/vKtL+ESOvDmfs83+uL97r5Sv4Lf0XfrV/Zr8uWY3wUAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAA ... src=" 3A8 YddQCBNJgWoScGWEnGTGbtaLvWZyeD1Uecz0DBnzvkLAoVqFeAqpTy2UsA4nc7s0LjmVjlNCiMVKZYijVCVQSDQsil+4tGrd2ElHSEuOp/PZOJlry9rFXz93PrGfv80AQAAn+7vv/rel3CxKr4CAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAACAz9DvKwAAgK9VdbxRGb3Xbm2e7G7rEwAA4MpUxupDD56klFJa3H80cjOu2X9tAADwVarWJvPtgakFfQIAAKBPAACAgnZrU58AAADXgvXxAADAFYilJsUBk6P1pcpYPZajHG8s6xMAAOCLN8ng9GK+52ClPKErHo3/f7S+dD03HdYnAABwU8WoSE6Oo/WlruGRt8VysrudtxgemFqo1ibyq67ViIo+AQCAa10gg9OLh6uNM++v1ibbrc2DlZmPHwmpjNWPN5aPN96GyuD04uD04nmVMjTbbLe2LjNgrI8HAIBrWiZDs83hubWj9aXSQwNTC8Nzaymlg5WZw9XGeXHSfX9ehRKON5b3H40crMxUaxN3Hr6sjNVLzz9cbQxOLw7NNrsf+kKMnwAAwHWMkyiQo/WlYmbkYZNPGjNJp3O62q2tMzPmcLURzdNubZbGag5WZobn1obnPvkTf+Yv7r97AAC4nnHSbm0W51bl+/cfjfRIhYGphaHZZveB8bFSZXB68c7Dl92PxlhKSqk0WnKyu32wMpNSGp5bu4RRFH0CAADXNE6KQxkx1ysmdPXIkjsPX8YAS+9PiVlb3fcfrjbara3hubW+0XtXkij6BAAArlh1/F1y3PrmDymlo/WlYofc+vbPfbdHXz2udw+bVMcbtx486c6Sk73nKaVOpxM/xvDI4dP5Nztvs6Ramxz+YSs6pG/0Xr6G443lV4/rt/7130uJ8upx/eTFs1vf/CHur443ik/QJwAA8DWojNUHfj0ft4dmm5W79w9WZorTugamFvr/+XcHf5zo7D0vvfDOw5ed/Rf9441 2a7 O4jP5gZaa900wp9fX1FV/S3mm+fjofgyEppcrd+7e+WU4p3f5xuzJ6L4+NdPaed/7vf2//uF0cLensPT/440Tn1V68pDJ6L27oEwAA+HoMz63FsvXYXCuWoQ9MLUQbxIL4V4/rpRUjsTXw/qORGDPJp6C0W5u9V6eklE52t/Pp8vHyo/WlwenFmFcWmXS0vhQr40sTumJUJzYprtYmu9ex6BMAALipSn/9R1oMzTartYmT3e1Yi3K0vtTZe368sZxjIJaORCoUz4yPJSsDUwsDUwt3Hr4sfVBunpRScSOvYmPEpsbxiZEx+f3zmvvixLPip+sTAAC42d5bMbK7HVO2qrXJmKw1OL1Y3MIrEiX6Ie4spkW8JNIlb8ZVfPN 2a7 Nam4zNu/L4SUkM5uThl0iR+JQYY4ndveIJ8YkXu2Le+ScAAHDFIjaGZpuRK3mKV7U2WcqMOMOke/pWu7VZrU2ct7VXTpST3e3jjeWYM/b +a9 9lUkRR/oij9aU4FyV28eo+C6Vam7zAc1GMnwAAwJUpzp4qxkk8VDo5Po+cxIBGZazebm0erMzE4vjecVIKldKPpeGUvBAlPxrXWdpoOLKqWpu4wC9EnwAAwGUrzstqtzZjZXzERsRDTMEqHc6Y0yLfH8viD1cbnzSCkVsoPr10I9x68CTfPlxtVGuT+QJyoqTC2MtFLZTXJwAAcNnen161FROoipnRPXgyPLdWGiEZnF784Jyuo/WlvFgllsjH+pZie8Q9h6uNYqL0jzeKC0ti8UnczokyNNs8b529PgEAgJshbxycM6N0VHwMnhSHRKrjjXxoSfFNinlwpjiNMbJkeG6ttN3WwcrMwNRCtEdlrH642ihGUXGWV4yT5GuORKnWJouTuy5kopc+AQCAS5VPLEmns6qK22SdFst74VEZvVfMlVjgfrjaKG46XBJNcvvH7cHpxe5dgGMuWUwqO95YzsMjsfFXXpQfu4GlwvZf+f6cKHmrseKwjD4BAICbp93aynOlcnukwgqTM0WcxO3SuSh5Etd5J5PEwYvx8jxK033YYgy8FEd12q2t/J7x5DzR6wLZXxgAAK5MPsYkD0TEmEbxOQNTCyd7z/OPlbF6aXQlEqVam4hhkO5xjHjn4pyx4mr7OM8k9g7OzzlaX+q7PZKPOolPiWlgJ7vb8UHx5AvcXDgZPwEAgKsVk7VyGHRP7qrWJto7zfzj8Nxa9+jKmXFytL706nF9/9HI8cby8cZyMU6Ka0tyoqTCwv3O3vOj9aVS6uQpXnEBscvwBX8b/kEAAMBliuGRXAJxo3gWeyk/irlSGauX9vVKKcUa91Q4jb7d2owsGZxevPPwZSosys/n08dgSDw/4iTWk+RZXie726VJYsUpXnnZiT4BAICbqdKf3j8esTreqNYmD5/Ox53dU7NKk7sGfvP9m8JYSkqpb/Re5e79k93tgd98/7YrXjw7XG1Uxxspper938adw3Nr1fFGDJsMTi/2jzeqtcnhubU7D192Xr3MQfJmp1m5ez+/eemzilcSq+qrtcn4oO4n6xMAALjeBm7Hf+YxkKEHT9qtzeL0rdLwSGlyV9/tkU4hElJK/eON47/9KW7kTqiM1YcePEkp9fX15WcOFY5cLEZI/3jj3ZjJi2cnL569C5IXz947SnKnmQo7Ix9vLLdbmwO/nn/749/+VPwd9QkAAFx3p+eWbObbh6uNylg9bncfIVIcUeleGZ9SGpxejHUgeVV9tTYR2wF/5CXFBsSx8Vcqnx15xpvEJeWLLx4tn1LqG/pHfQIAADdD/PWfF6OXDg/pfYRI96N5V+JqbTKnS7U2OTTb7H2u/JkX1m5txv/lO3vszZWXr+SNv04L47O2CNYnAABwefJoQyzeiKXwPbKkezV8MU7yC6u1ieKq+kiUT7qww9VGbBbc+0z6Yr0UWytedd5hkR/P+ScAAHCp8tHvMZur9Dd9tTaR0kK+XUyX09lfC2c9NFkZq8dQRr6n+Lb7j0YGphbO226r3dosnl5frU3kSim9JA/UlPbyijoanF5889//qU8AAOAmePM6t0SccpirI49+tFtb+fbxRhqYWigMjCzkZw5Ov4ztgHMkDM+tHazM7D8aKY6rZEOzzXZr67xHS5PBShsc9zjMPi4vnhDjQp3jV5/zDZnfBQAAl6X9Ov6zODPqQ2tOJs74I/50NXypHIbn1gamFg5XG/uPRvLEsHw0yuD04tBs82h9qcecsfShI016PPr2oeMDfQIAADdDroXiyes9giHXSxwzH42RF9bnl+dlIbFsfWi2eWbYxJknsS9w8f47D1/GMY4lPdaT5Ald+fLeXqrxEwAAuClyG8Rf86UA 6A6 VHBLFhSXx2tOF6ZvHG8uHq42DlZnCq7ZKU7b2H43ktxqYWigtgm+3NvPLS9fQvcXwmdO9IlR6j8zoEwAAuHbynsJn/sVfGvdot7YqY/V8Rnvhae/2AYvIOdndzo3RnRCVsXqxWIrVcbAyE5t3pbMW6xe3GC6O+ZRqpFqbjFLSJwAAcENUb0VIRB5EDBTPakxnLUc5c8nH4PRilMPJ7nYxaQ5WZs47tKRUF2c+v3uf4lIUdb9VPtjx8wdP9AkAAFyi9us4luRwtdFubUZXxFSriJDcBpWxeqwJiaMbhx486fGuR+tLQ7PN4iHu733m6XSyPEOs3dqM0mi3NkvDI8V5X5WxendyFAd/8jvHepgehznqEwAAuI5K5zNWaxP5r/w8t2pgaiGmS33gT/nTQYw4VLFam+wuhFeP69XaZHROjpOT3e34sTQ8EkfIFy+1dA3xqrwUPn9cntn1qYdC6hMAALhKR+tLsQvwye52xEMpKo7Wl/rHGyd7zw9XG4dP509ePEspdTqd7re69c0f3obEeOPNTvPNTnNgaiGvVBmYWhj+YWv4h7enKMYTDp/OH//Xk+Ef3g2S5OdXxxvt1la+mL5/+KfK3fvvTf0ab6SUjjeWI076Ru+llE5ePOsfb7z+60JKafiHrd5nz+sTAAC4XvK2vJWxemfveXHTrfyEyt37nf0XKaX2TvPNTjOl1NfX1/1WnVd70SHtnWZn73ln7/nxxnJn/0UsCBmcXqzcvd/Ze360vrT/aOT10/mTF8+GHjwZevCkcvd+fpOYOVYZqw/8er648qT/X2ZfP50vftzAr+eL0736xxuRPa//+m+dvedDs83K3fvWxwMAwA0Tf+UPz63FKfL5/jwF62h9Kd/uPqskq9Ymh2abpSQ42d0uTrs6fDofLy9O8SqJmCntR1zOhrF6tTYZn1X8xOON5ZPd7TiT/oMT0vQJAABcOzk58oL1kli/npeXHK42Xj2un5coZ+7Kdfo+W7G8vvf1lE57jBo52Xve+zmldInr1CcAAHDz5L/1iwvK852xAXFxuKPzfi0UxThMd+F85JXEyYyD04t5dX4cVN/eaZYKpN 3a7 P6gylg9Kqt7opo+AQCAmyGfpdg9AHLn4cvY2Lf00MHKzJnVEZPBusuh9Pweh5PE9l/5TbrneuXtg7sHfPJGwxeyubA+AQCAK06U0gBIjJyc7G7HTl/F58epKTHicbS+dLAys/9o5Hhj+XC1MTi9mI9ACaWdwaq1iTOHOGJf4+ON5RhFGZptlkomNjs+3lgemFooBVLeB/lCZnbpEwAAuBr5LMVohuJUrjjJJJ0uQy+dKJI38I2F6fn+w9VGDLkMzTZjplZp3XyconjmCEw888wBkJjrlS+ytH1wvGGOkx4rYfQJAABcX3kyVSRKBEmxUqIx4qH8d38MdMRoSXcMnOxux6OxvL40nBKjIt3nk+RiiZGT0ptHgZzsbufVKblDSnHy+Scz6hMAALgaMXcr/qaPRMmdcHqc/EQ8FM/sG70XcRLPyRO6znzzHCrFIZHjjeVIlNL0rXZrqzJWjziJ58eb943ei/fvnrsVNRUxE7ly5+HLdM4IjD4BAIDrLsKjWpuM1fB5bUn+Kz9vChybEd/+cbs0XysmdMXLP/5zu89PjA2ISzFzuNoYevCkWpvMMRNjO/HyWMoStwemFmKRzEUtQdEnAABwBYqnoMRcrPwnflRBhMfA1MLhauPkxbPu0ZKT3e39RyPFNSe9xSbC76912cyl8V4kjNUrd+/n9fSlBMojLUOzzXi3i9pcWJ8AAMCVyWMm1drk8Nxabox8Z/w4NNs8fDofHXJm50TYRKX0CJXSEMfBykxp2CTXyPDcWj7kPhUmdOUuijldcf/BysxFbS6sTwAA4FokSkop7xEc5zPGEpScBzFGUVr1XqqUPOfqzsOXxalfkRORN7E38f6jkTOjIuZrHa0vvdlp5kqJKymupI9uieGXC4yTlFLf2O+f+mcBAAA/w99/9f2FvE9s45sHTPK5KPuPRlJKdx6+fLPTfP10PtogloV0T8o6060HT05ePPuYJ+driOS49eBJ/3gjX0Bs1ZVPi08pffw1fJJ+/6oAAOBqxfr4vtF7/eON/vHG8Nzam51m1MXrp/OHT+dvffvn6nijvdOMpw1OLw7/sPVmp/lmp9nZe97rrTudD356dbwxOLWQUnqz04w5YH2j96r3f/t28GS8kVLqvHo5/MNW5e79+ND2ztuZZn2j9z5wAZ/I+AkAAPxMFzJ+MjTbbLe2imMRlbF6HKeYTld3RBvEaEZ+Tgx3tFubpZcX9Rg/KQ7alKZpDc02+26PHvxxIqUUewe3W5t5WXx++fDcmvldAADwVfVJOp211V 0a+ QzH6nhj6MGT7ilVxZKJl8dxiu/+3O 8a3 4gF9MWXdL9nrDw53ljubqfUNRPsYr9SfQIAAFfcJzlR8o9H60ul0jjvtMTuUAnRHnG7WpsovnnvIZe4kleP66WwKX3El4gTfQIAANeiT9LpwEXpztwSHz+fKkLizIc+uKI9PiVWw+e36s6b0lwvfQIAAF9bn4SBqYVSD6SUTl48e7PTbLc2B6cXL+qk9jPF4MnByszAb77vH290x9KXKxN9AgAA165PiqGSuqZmpS82sSr1HMBJHzH2ok8AAOCr7ZMeFRF9cuZISzpreUme8VVcoJLPgy8tdLlazj8BAIBrJ0dIt1ikft4Kk3hCPHq8sTwwtVBskqLC/edu/1W8npTSJWSMPgEAgOsoNuzKe3C9XxTnypmRTo8uSYWhknTWhLH3q+bsj/hCp8XrEwAAuAHiRPkeox/FckjvLw7J55McrS/lA+bzAMjxxrvXFs9C6fH+l1MmwfoTAAD4mS5t/UmERFGPiVjFDYI/eH+Pj7jMLNEnAABwY/rkI+Xdgc9Llxgq+aI7FH+min9VAADwFegdJ+l0zlg8M6Z76RMAAODiDUwt9N0effW4/sEttg5XG+3W1vDcWt/ovWv4i5jfBQAAP9N1m9/1FTB+AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAA6BMAAAB9AgAAfF36Op2ObwEAALgOjJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAAD6BAAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAQJ8AAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAAH0CAADoEwAAgOuh31dw4Wrf/eRLAAD4HK2/fOtL+GUyfgIAwLXjf/DVJwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAPoEAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAABAnwAAAOgTAADgF6HfV/AltP7yrS/hS6t999PN/Z5v9MX73X2lfgW/o+/Wr3w5v6Z/3r9Mxk8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAB9AgAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAoE8AAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAAD0CQAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAADQJwAAgD4BAAC4XH2dTse3cLFq3/3kSwAA+Bz/s/K7/mqf7+EXqN9X8CW0/vKtL+ESOvDmfs83+uL97r5Sv4Lf0XfrV/Zr8uWY3wUAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAOgTAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAAAfQIAAKBPAAA...

Ngày tải lên: 05/03/2014, 13:20

60 530 0
ASCA NATIONAL MODEL : A FRAMEWORK FOR SCHOOL COUNSELING PROGRAMS docx

ASCA NATIONAL MODEL : A FRAMEWORK FOR SCHOOL COUNSELING PROGRAMS docx

... appropriate recommendations Program Audit 110 THE ASCA NATIONAL MODEL: A FRAMEWORK FOR SCHOOL COUNSELING PROGRAMS APPENDIX ã SAMPLE FORM ASCA NATIONAL MODEL : A FRAMEWORK FOR SCHOOL COUNSELING PROGRAMS Program ... time each student leaves the school system. The ASCA National Standards domain areas serve as the foundational goals for the school counseling program: academic, career and personal/social development. ... Program Audit 116 THE ASCA NATIONAL MODEL: A FRAMEWORK FOR SCHOOL COUNSELING PROGRAMS APPENDIX ã SAMPLE FORM XI. USE OF DATA and STUDENT MONITORING Analysis of data drives the program. Monitoring...

Ngày tải lên: 06/03/2014, 19:20

11 494 2
Báo cáo khoa học: "A Framework for Figurative Language Detection Based on Sense Differentiation" pptx

Báo cáo khoa học: "A Framework for Figurative Language Detection Based on Sense Differentiation" pptx

... 315-323. Rada Mihalcea, Courtney Corley and Carlo Strappa- rava. 2006. Corpus-based and Knowledge-based Measures of Text Semantic Similarity. Proceedings of AAAI-06 Rada Mihalcea. 2007. Using Wikipedia ... Computational Linguistics A Framework for Figurative Language Detection Based on Sense Differentiation Daria Bogdanova University of Saint Petersburg Saint Petersburg dasha.bogdanova@gmail.com Abstract Various ... International Con- ference on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, pp. 226231 Michael Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman, London Graham Katz and...

Ngày tải lên: 07/03/2014, 22:20

6 540 0
Báo cáo khoa học: "A Framework for Customizable Generation of Hypertext Presentations" pdf

Báo cáo khoa học: "A Framework for Customizable Generation of Hypertext Presentations" pdf

... Exensible Framework for Real-Time Text Generation, In Proceedings of the 9th International Workshop on Natural Language Generation, Ontario, Canada. 722 Presentation Core Generator Domain Data ... generality and simplicity. An exemplar can contain dif- 719 A Framework for Customizable Generation of Hypertext Presentations Benoit Lavoie and Owen Rambow CoGenTex, Inc. 840 Hanshaw Road, ... PRESENTOR and ordi- nary schemas is that they integrate conceptual, syntactic and surface form specifications of the content, and can be used for both deep and shal- low generation, and combining...

Ngày tải lên: 08/03/2014, 05:21

5 419 0
w