computational fluid dynamics, second edition
... Processing 20 .4 .2 Solution of Navier- Stokes System of Equations with Multithreading 20 .5 Summary References xiii 617 617 619 621 622 622 623 627 627 628 628 630 634 639 640 644 645 650 6 52 6 52 654 ... 7.3 .2 Three-Dimensional FVM Equations 7.4 FVM- FDV Formulation 7.5 Example Problems 7.6 Summary References 193 195 195 196 197 197 197 197 20 4 20 4 20 5 20 7 20 7 20 8 21 3 21 4 21 8 21 8 21 9 21 9 22 3 22 5 22 7 ... with FDM equations at nodes and given by u3 − 2u2 + u1 − 2u2 = f2 (1/3 )2 u4 − 2u3 + u2 − 2u3 = f3 (1/3 )2 Thus we obtain 9(u3 − 2u2 + 0) − 2u2 = − 38 9(u3 − − 2u3 + u2 ) − 2u3 = − 32 or 20 9...
Ngày tải lên: 01/04/2014, 10:45
... Introduction M2 = G(x1 , x2 z2 , t s)· ·@ 0 GS (0, z2 , y1 , y2 , s) 21 GS (0, z2 , y1 , y2 , s) 21 ⇤ (z2 ,s) ⇤ (z2 ,s) O1 GS (0, z2 , y1 , y2 , s) 22 O2 GS (0, z2 , y1 , y2 , s) 22 ⇤ (z2 ,s) ⇤ (z2 ,s) ... p2 + y2O(x,t) k p2 e k RR |y |2 Ct t 4⇡t (t+1) y2O(x,t) (t+1) k e p2 t k |y |2 Ct y2O(x,t) re |y |2 Ct ·(y x) p2 t dy dy 2e |y |2 2Ct ·(y x) (y1 x1 )2 (y2 x2 )2 (y1 x1 )2 (y2 x2 )2 RR dy (y1 x1 )2 ... (0, z2 , y1 , y2 , s) 23 O2 GS (0, z2 , y1 , y2 , s) 23 (z2 ,s) ⇤ O1 ⇤ O2 (z2 ,s) A @x1 G(x1 , x2 z2 , t s) M3 = 0 B C · B GS (0, z2 , y1 , y2 , s) GS (0, z2 , y1 , y2 , s) GS (0, z2 , y1 , y2 ,...
Ngày tải lên: 10/09/2015, 09:06
... b11 b21 b31 b41 b 12 b 22 b 32 b 42 x 12 x 22 x 32 x 42 x13 x23 x33 x43 b13 b23 b33 b43 0 0 y11 y21 y31 y41 0 0 y 12 y 22 y 32 y 42 y13 y23 y33 y43 y14 y24 y34 ... equation that looks like this (in the case of a single right-hand side vector): x1 b1 a11 a 12 a13 a14 a 22 a23 a24 x2 b2 (2. 2.1) · = 0 a33 a34 x3 b3 0 a44 x4 ... 37 2. 1 Gauss-Jordan Elimination Elimination on Column-Augmented Matrices Consider the linear matrix equation a 12 a 22 a 32 a 42 a13 a23 a33 a43 a14 x11 a24 x21 · a34...
Ngày tải lên: 15/12/2013, 04:15
Đề tài " Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing " pdf
... basis of H We write Z2 \ {(0, 0)} = Z2 ∪ Z2 , + − where Z2 = (k1 , k2 ) ∈ Z2 | k2 > ∪ (k1 , 0) ∈ Z2 | k1 > , + Z2 = (k1 , k2 ) ∈ Z2 | − k ∈ Z2 , − + ERGODICITY OF THE 2D NAVIER- STOKES EQUATIONS ... Ergodicity of the 2D Navier- Stokes equations with random forcing, Comm Math Phys 22 4 (20 01), 65–81 [BKL 02] ——— , Exponential mixing of the 2D stochastic Navier- Stokes dynamics, Comm Math Phys 23 0 (20 02) , ... sin x2 , and cos x2 Example 2. 7 Take Z0 = { (2, 0), ( 2, 0), (2, 2) , ( 2, 2) }, which corresponds to case of Theorem 2. 3 with G generated by (0, 2) and (2, 0) In ˜ this case, H is the set of functions...
Ngày tải lên: 29/03/2014, 07:20
Báo cáo hóa học: " Global behavior of 1D compressible isentropic Navier-Stokes equations with a non-autonomous external force" docx
... (2. 10) yields t u2n dx + n(2n − 1) u2n 2 ρ 1+θ u2 dxds x 0 t t f 2n dxds + (2n − 1) ≤ C1 + 0 u2n dxds 0 t u2n 2 ρ 2 −1−θ dxds +n(2n − 1) (2: 11) t ≤ C1 (T) + n(2n − 1) 0 t t (2 −1−θ )n n − 2n ... dx + 2n(2n − 1) u2n 2 ρ 1+θ u2 dxds x 2n 0 t 0 (2: 10) u2n 2 ρ γ ux dxds + 2n u2n dx + 2n(2n − 1) = t f u2n−1 dxds 0 Applying the Young inequality and condition f(r(x, ·), ·) Î L2n([0,T],L2n[0,1]) ... | |2 + ||utx | |2 + ||uttx | |2 + || H H H ≤ C2 (T) ||ux | |2 + ||ρx | |2 + ||utx | |2 + ||uttx | |2 H H H ∂2f || ∂x∂t (4 :27 ) +||frr | |2 + ||fr | |2 ||ux | |2 + ||frt | |2 L Inserting (4 .27 ) into (4 .26 ),...
Ngày tải lên: 20/06/2014, 22:20
Báo cáo hóa học: " Research Article Regularity Criterion for Weak Solutions to the Navier-Stokes Equations in Terms of the Gradient of the Pressure" docx
... |∇u |2 |u |2 dx |∇|u |2 |2 dx − ∇π · |u |2 u dx ≤ ∇π ≤ C ∇π ≤ C u∇u ≤ 1 /2 L2 1 /2 L2 1 /2 BMO ∇π ∇π |u · ∇u |2 L C ∇π u L4 L4 u 1 /2 BMO L4 u 2. 2 L4 2/ 3 BMO u , L4 which yields u L4 ≤ u0 T L4 exp C ∇π 2/ 3 ... regularity of weak solutions of the Navier- Stokes system, ” Journal of Differential Equations, vol 62, no 2, pp 186 21 2, 1986 M Struwe, “On partial regularity results for the Navier- Stokes equations, ” ... “L3,∞ -solutions of Navier- Stokes equations and e backward uniqueness,” Russian Mathematical Surveys, vol 58, no 2, pp 21 1 25 0, 20 03 H Beir˜ o da Veiga, “A new regularity class for the Navier- Stokes...
Ngày tải lên: 22/06/2014, 02:20
Module 2: Overview of System Development
... Windows 20 00/XP Platform Builder Windows 20 00/XP Target Designer Pentium class x86 Same as XP The Microsoft strategy is to offer a broad range of Windows-based, embedded operating -system solutions ... with a minimum of rewriting 22 Module 2: Overview of System Development The Managed Application Model (continued) Topic Objective NET Compact Framework (CF) To introduce the features of the NET ... trademarks of their respective owners Module 2: Overview of System Development iii Instructor Notes Presentation: 60 Minutes This module provides students with an overview of the system development...
Ngày tải lên: 18/10/2013, 17:15
Tài liệu Solution of Linear Algebraic Equations part 1 docx
... positive-definite ( 2. 9), tridiagonal ( 2. 4), band diagonal ( 2. 4), Toeplitz ( 2. 8), Vandermonde ( 2. 8), sparse ( 2. 7) • Strassen’s “fast matrix inversion” ( 2. 11) 36 Chapter Solution of Linear Algebraic Equations ... set of equations to be solved can be written as the N ×N set of equations (AT · A) · x = (AT · b) (2. 0.4) where AT denotes the transpose of the matrix A Equations (2. 0.4) are called the normal equations ... nullspace of the matrix A) The task of finding the solution space of A involves • Singular value decomposition of a matrix A This subject is treated in 2. 6 In the opposite case there are more equations...
Ngày tải lên: 15/12/2013, 04:15
Tài liệu Solution of Linear Algebraic Equations part 11 ppt
... b11 b21 b 12 b 22 = c11 c21 c 12 c 22 (2. 11.1) Eight, right? Here they are written explicitly: c11 = a11 × b11 + a 12 × b21 c 12 = a11 × b 12 + a 12 × b 22 c21 = a21 × b11 + a 22 × b21 (2. 11 .2) c 22 = a21 ... + a 22 ) × (b11 + b 22 ) Q2 ≡ (a21 + a 22 ) × b11 Q3 ≡ a11 × (b 12 − b 22 ) Q4 ≡ a 22 × (−b11 + b21 ) Q5 ≡ (a11 + a 12 ) × b 22 Q6 ≡ (−a11 + a21 ) × (b11 + b 12 ) Q7 ≡ (a 12 − a 22 ) × (b21 + b 22 ) (2. 11.3) ... Computations, 2nd ed (Baltimore: Johns Hopkins University Press), §§5 .2, 5.3, 12. 6 [2] 2. 11 Is Matrix Inversion an N Process? We close this chapter with a little entertainment, a bit of algorithmic...
Ngày tải lên: 15/12/2013, 04:15
Tài liệu Root Finding and Nonlinear Sets of Equations part 2 docx
... 1-800-8 72- 7 423 (North America only),or send email to trade@cup.cam.ac.uk (outside North America) a x2 x3 b x1 d c f e 351 9.1 Bracketing and Bisection 3 52 Chapter Root Finding and Nonlinear Sets of Equations ... == *x2) nrerror("Bad initial range in zbrac"); f1=(*func)(*x1); f2=(*func)(*x2); for (j=1;j
Ngày tải lên: 15/12/2013, 04:15
Tài liệu Solution of Linear Algebraic Equations part 3 pdf
... case of a × matrix A, for example, equation (2. 3.1) would look like this: α11 21 α31 α41 22 α 32 α 42 0 α33 α43 β11 · 0 α44 β 12 22 0 β13 23 β33 β14 24 β34 β44 a11 a = 21 ... 21 a31 a41 a 12 a 22 a 32 a 42 a13 a23 a33 a43 a14 a24 a34 a44 (2. 3 .2) We can use a decomposition such as (2. 3.1) to solve the linear set A · x = (L · U) · x = L · (U · x) = b (2. 3.3) by first ... aii i (2. 2.3) (2. 2.4) j=i+1 The procedure defined by equation (2. 2.4) is called backsubstitution The combination of Gaussian elimination and backsubstitution yields a solution to the set of equations...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 4 docx
... (equation 2. 3.11) are not stored at all.] In brief, Crout’s method fills in the combined matrix of α’s and β’s, β11 21 α31 α41 β 12 22 α 32 α 42 β13 23 β33 α43 β14 24 β34 β44 (2. 3.14) ... αi2 β2j + · · · + αij βjj = aij (2. 3.8) (2. 3.9) (2. 3.10) Equations (2. 3.8)– (2. 3.10) total N equations for the N + N unknown α’s and β’s (the diagonal being represented twice) Since the number of ... = 1, 2, 3, , N these two procedures: First, for i = 1, 2, , j, use (2. 3.8), (2. 3.9), and (2. 3.11) to solve for βij , namely i−1 βij = aij − αik βkj (2. 3. 12) k=1 (When i = in 2. 3. 12 the...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 5 docx
... δb (2. 5 .2) Subtracting (2. 5.1) from (2. 5 .2) gives A · δx = δb (2. 5.3) Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0- 521 -43108-5) Copyright (C) 1988-19 92 by ... improved solution x 2. 5 Iterative Improvement of a Solution to Linear Equations Obviously it is not easy to obtain greater precision for the solution of a linear set than the precision of your ... routine whose analog in 2. 3 is lubksb 55 2. 5 Iterative Improvement of a Solution to Linear Equations A δx x+ b δx δb A−1 Figure 2. 5.1 Iterative improvement of the solution to A · x = b The...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 12 pdf
... inverses of each other Then the c’s can be obtained from the a’s by the following operations (compare equations 2. 7 .22 and 2. 7 .25 ): R1 = Inverse(a11 ) R2 = a21 × R1 R3 = R1 × a 12 R4 = a21 × R3 ... R4 − a 22 R6 = Inverse(R5 ) c 12 = R3 × R6 c21 = R6 × R2 R7 = R3 × c21 c11 = R1 − R7 c 22 = −R6 (2. 11.6) Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0- 521 -43108-5) ... to N log2 With this “fast” matrix multiplication, Strassen also obtained a surprising result for matrix inversion [1] Suppose that the matrices a11 a21 a 12 a 22 and c11 c21 c 12 c 22 (2. 11.5) are...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 6 pptx
... 56 Chapter Solution of Linear Algebraic Equations But (2. 5 .2) can also be solved, trivially, for δb Substituting this into (2. 5.3) gives A · δx = A · (x + δx) − b (2. 5.4) #include "nrutil.h" ... roundoff error, then after one application of equation (2. 5.10) (that is, going from x0 ≡ B0 · b to x1 ) the first neglected term, of order R2 , will be smaller than the roundoff error Equation (2. 5.10), ... matrix Define the residual matrix R of B0 as 58 Chapter Solution of Linear Algebraic Equations We can define the norm of a matrix as the largest amplification of length that it is able to induce...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 7 docx
... solutions of A⋅x = d solutions of A ⋅ x = c′ SVD solution of A ⋅ x = c range of A d c′ c SVD solution of A⋅x = d (b) Figure 2. 6.1 (a) A nonsingular matrix A maps a vector space into one of the ... of the elements wj From (2. 6.1) it now follows immediately that the inverse of A is 62 Chapter Solution of Linear Algebraic Equations If we want to single out one particular member of this solution- set ... same permutation of the columns of U, elements of W, and columns of V (or rows of VT ), or (ii) forming linear combinations of any columns of U and V whose corresponding elements of W happen to...
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 8 docx
... j,jl,jm,jp,ju,k,m,n2,noff,inc,iv; float v; n2=ija[1]; Linear size of matrix plus for (j=1;j
Ngày tải lên: 24/12/2013, 12:16
Tài liệu Solution of Linear Algebraic Equations part 9 docx
... equation (2. 9 .2) in components, one readily obtains the analogs of equations (2. 3. 12) – (2. 3.13), 1 /2 i−1 Lii = aii − L2 ik (2. 9.4) k=1 and Lji = Lii i−1 aij − Lik Ljk k=1 j = i + 1, i + 2, , N (2. 9.5) ... ) (M ) (2. 8 .25 ) Now, starting with the initial values (1) x1 = y1 /R0 (1) G1 = R−1 /R0 (1) H1 = R1 /R0 (2. 8 .26 ) we can recurse away At each stage M we use equations (2. 8 .23 ) and (2. 8 .24 ) to find ... (2. 8.4) k=1 But (2. 8.4) says that Ajk is exactly the inverse of the matrix of components xk−1 , which i appears in (2. 8 .2) , with the subscript as the column index Therefore the solution of (2. 8 .2) ...
Ngày tải lên: 21/01/2014, 18:20
Tài liệu Solution of Linear Algebraic Equations part 10 docx
... equation (2. 9 .2) in components, one readily obtains the analogs of equations (2. 3. 12) – (2. 3.13), 1 /2 i−1 Lii = aii − L2 ik (2. 9.4) k=1 and Lji = Lii i−1 aij − Lik Ljk k=1 j = i + 1, i + 2, , N (2. 9.5) ... (2. 8.4) k=1 But (2. 8.4) says that Ajk is exactly the inverse of the matrix of components xk−1 , which i appears in (2. 8 .2) , with the subscript as the column index Therefore the solution of (2. 8 .2) ... ) (M ) (2. 8 .25 ) Now, starting with the initial values (1) x1 = y1 /R0 (1) G1 = R−1 /R0 (1) H1 = R1 /R0 (2. 8 .26 ) we can recurse away At each stage M we use equations (2. 8 .23 ) and (2. 8 .24 ) to find...
Ngày tải lên: 21/01/2014, 18:20
Tài liệu Numerical Solution of Stochastic Differential Equations with Jumps in Finance pdf
... (20 02) , Borodin & Salminen (20 02) , J¨ckel a (20 02) , Joshi (20 03), Sch¨nbucher (20 03), Shreve (20 03a, 20 03b), Cont & o Tankov (20 04), Glasserman (20 04), Higham (20 04), Milstein & Tretjakov (20 04), ... 23 3 23 3 24 5 25 2 26 6 27 1 Regular Strong Taylor Approximations with Jumps 27 3 6.1 Discrete-Time Approximation 27 3 6 .2 Strong Order 1.0 Taylor ... (1997), Duffie, Pan & Singleton (20 00), Kou (20 02) , Sch¨nbucher (20 03), o Glasserman & Kou (20 03), Cont & Tankov (20 04) and Geman & Roncoroni (20 06) The areas of application of SDEs with jumps go far...
Ngày tải lên: 19/02/2014, 22:20