MỤC LỤC
Hệ số xác định R2 và R2 hiệu chỉnh (Adjusted R square) được dùng để đánh giá độ phù hợp của mô hình. Vì R2 sẽ tăng khi đưa thêm biến độc lập vào mô hình nên dùng R2 hiệu chỉnh sẽ an toàn hơn khi đánh giá độ phù hợp của mô hình. Để kiểm định xem có thể suy diễn mô hình cho tổng thể thực hay không ta phải kiểm định độ phù hợp của mô hình.
mô hình phù hợp với tập dữ liệu và có thể suy rộng ra cho toàn tổng thể. - Ý nghĩa của hệ số riêng phần là βk đo lường sự thay đồi giá trị trung bình Y khi Xk thay đổi 1 đơn vị, giữ các biến độc lập còn lại không đổi. - Hệ số Beta (cột thứ 4 từ bên trái) được dùng để so sánh khi các biến độc lập không cùng đơn vị đo lường.
Giải thích mô hình: Phương trình hồi quy bội được phương pháp stepwise ước lượng cho thấy sự hài lòng của du khách về 4 dịch vụ: lưu trú, vận chuyển, ăn uống, và mua sắm có tác động tỷ lệ thuận với sự hài lòng chung của du khách về điểm đến. Trong đó sự hài lòng về dịch vụ lưu trú có tác động mạnh nhất đến sự hài lòng về điểm đến. MỘT SỐ BIỆN PHÁP KHẮC PHỤC HIỆN TƯỢNG ĐA CỘNG TUYẾN TRONG MÔ HÌNH HỒI QUY TUYẾN TÍNH.
(Đề nghị tham khảo chi tiết hơn trong giáo trình Kinh tế lượng của Tiến sĩ Mai Văn Nam) 1. Thông tin tiên nghiệm có thể từ các công việc thực tế trước đây trong đó đã xảy ra hiện tượng cộng tuyến nhưng ít nghiêm trọng hoặc từ các lý thuyết tương ứng trong lĩnh vực nghiên cứu.
Bước 3: Loại biến mà giá trị R2 tính được khi không có mặt biến đó lớn hơn.
Đưa biến phụ thuộc Y dạng nhị phân vào ô dependent, và biến độc lập sang khung Covariate. Chọn phương pháp đưa biến vào (Method) tương tự như hồi quy tuyến tính thông thường. Tuy nhiên điều kiện căn cứ trên số thống kê likelihood-ratio (tỷ lệ thích hợp) hay số thống kê Wald.
- Enter: đưa vào bắt buộc, các biến trong khối biến độc lập được đưa vào trong một bước. Nó kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Likelihood-ratio dựa trên những ước lượng thông số có điều kiện. - Forward: LR là phương pháp đưa dần vào kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Likelihood-ratio dựa trên ước lượng khả năng xảy ra tối đa (maximum-likelihood estimates).
- Forward: Wald là phương pháp đưa dần vào kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Wald. Nó kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Likelihood-ratio dựa trên những ước lượng thông số có điều kiện. - Backward: LR là phương pháp loại trừ dần vào kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Likelihood-ratio dựa trên ước lượng khả năng xảy ra tối đa.
- Backward: Wald là phương pháp đưa dần vào kiểm tra việc loại biến căn cứ trên xác suất của số thống kê Wald. - Stepwise: hồi quy từng bước, số thống kê được sử dụng cho các biến được đưa vào và loại ra căn cứ trên số thống kê Likelihood-ratio, hay số thống kê Wald. Để hiện đồ thị phân loại giá trị thật và giá trị dự báo của biến phụ thuộc, chọn Option, chọn Classification plots trong phần Statistics and plots.
Muốn tính được giá trị dự đoán, là xác suất mà một đối tượng sẽ … (biến phụ thuộc Y), ta chọn Predict value trong hộp thoại Save.
Nghĩa là tổ hợp liên hệ tuyến tính của toàn bộ các hệ số trong mô hình có ý nghĩa trong việc giải thích cho biến phụ thuộc. Khác với hồi quy tuyến tính thông thường hệ số R2 càng lớn thì mô hình càng phù hợp, hồi quy Binary Logistic sử dụng chỉ tiêu -2LL (-2 log likelihood) để đánh giá độ phù hợp của mô hình. Nếu hệ số hồi quy B0 và B1 đều bằng 0 thì tỷ lệ chênh lệch giữa các xác suất sẽ bằng 1, tức xác suất để sự kiện xảy ra hay không xảy ra như nhau, lúc đó mô hình hồi quy không có tác dụng dự đoán.
Còn đối với hồi quy Binary Logistic, đại lượng Wald Chi Square được sử dụng để kiểm định ý nghĩa thống kê của hệ số hồi quy tổng thể. VẬN DỤNG MÔ HÌNH HỒI QUY BINARY LOGISTIC CHO MỤC ĐÍCH DỰ BÁO Mô hình hồi quy Binary Logistic có thể được áp dụng để dự báo khả năng trả nợ khi đối tượng đi vay hay dự báo nhu cầu sử dụng một sản phẩm cụ thể nào đó. Trong phân tích nhân tố, cần kiểm định mối tương quan của các biến với nhau (H0: các biến không có tương quan với nhau trong tổng thể).
Nếu giả thuyết H0 không được bác bỏ thì phân tích nhân tố có khả năng không thích hợp. - Chọn phương pháp rút trích nhân tố, phương pháp mặc định là rút các thành phần chính – Principal components. • Xác định từ trước dựa vào ý đồ của nhà nghiên cứu và kết quả của các cuộc nghiên cứu trước.
Có nhiều phương pháp xoay khác nhau trong đó được sử dụng rộng rãi nhất là Varimax procedure (xoay nguyên góc các nhân tố để tối thiểu hoá số lượng biến có hệ số lớn tại cùng một nhân tố, vì vậy sẽ tăng cường khả năng giải thích các nhân tố). Nếu nhà nghiên cứu muốn xác định tập hợp nhân tố ít hơn để sử dụng trong các phương pháp phân tích đa biến tiếp theo (phân tích ANOVA, hồi quy…), ta có thể tính toán ra các nhân số (trị số của các biến tổng hợp) cho từng trường hợp quan sát một. - Mặc định của chương trình là phương pháp tính nhân số Regression (theo đơn vị đo lường độ lệch chuẩn).
VD: xác định nhân tố ảnh hưởng đến quyết định chọn nhà trọ của sinh viên khoa công nghệ trường Đại học Cần thơ. Dựa vào bảng 5 và theo tiêu chuẩn eigenvalue lớn hơn 1 thì chỉ có 3 nhân tố được rút trích ra. Giá trị Cumulative % cho biết 3 nhân tố đầu giải thích 66.78% biến thiên của dữ liệu.
Dựa vào những điểm giống nhau (thể hiện tính chung) của biến nằm trong nhân tố và những nghiên cứu trước nhà nghiên cứu sẽ đặt tên cho những nhân tố này. VD: nhóm 1 là nhân tố an toàn; nhóm 2 là nhân tố điều kiện sinh hoạt; nhóm 3 là nhân tố vị trí thuận lợi.
Đối với câu hỏi nhiều lựa chọn, khi cần phân tích tần số chúng ta không sử dụng công cụ thống kê mô tả tính Frequency thông thường. Chọn tất cả các biến thuộc câu nhiều lựa chọn đưa vào khung Variables in Set. - Nếu dùng cách mã hoá 1: dùng dạng câu hỏi phân đôi Có – Không, ta sẽ khai báo biến ở dòng Dichotomies.
- Nếu dùng cách mã hoá 2, ta sẽ khai báo ở dòng Categories, và đếm các số thứ tự của biến. Click vào Add để xác nhận biến tổng hợp đã được tạo Click chọn Close để hoàn tất quá trình định dạng biến tổng hợp. Đưa biến tổng hợp vừa tạo ở phần trên vào ô Tables for Click chọn Ok để hoàn tất thao tác.
- Percent of Cases: phần trăm trên tổng số bệnh nhân được quan sát (50 bệnh nhân) - Percent of Responses: phần trăm trên tổng sự trả lời (vì mỗi bệnh nhân có thể có nhiều.
Đối với ví dụ trên, sau khi phân tích nhân tố ta có được 3 nhóm, vậy ta sẽ tiến hành mã hoá 3 biến mới (đại diện cho 3 nhóm) trong bộ số liệu đã có tại cửa sổ Variable View.