MỤC LỤC
Mọi anten đều có tính phương hướng nghĩa là ở một hướng nào đó anten phát hoặc thu là tốt nhất và cũng có thể ở hướng đó anten phát hoặc thu xấu hơn hoặc không bức xạ, không thu được sóng điện từ. Hướng tính của anten ngoài thông số về hệ số định hướng như đã phân tích ở trên còn được đặc trưng bởi đồ thị phương hướng của anten. Dạng đồ thị phương hướng có giá trị trường theo phương cực đại bằng một như vậy được gọi là đồ thị phương hướng chuẩn hoá.
Trong không gian, đồ thị phương hướng của anten có dang hình khối, nhưng trong thực tế chỉ cần xem xét chúng trong mặt phẳng ngang (góc ϕ) và mặt phẳng đứng góc (θ). Trường bức xạ biến đổi từ giá trị cực đại đến giá trị bé, có thể bằng không theo sự biến đổi của các góc theo phương hướng khác nhau. Để đánh giá dạng của đồ thị phương hướng người ta đưa vào khái niệm độ rộng của đồ thị phương hướng hay còn gọi là góc bức xạ.
Góc bức xạ được xác định bởi góc nằm giữa hai bán kính vector có giá trị bằng 0.5 công suất cực đại, cũng vì vậy mà góc bức xạ còn được gọi là góc mở nửa công suất.
Với những lợi điểm của mình như nhỏ gọn, giá thành thấp, dễ chế tạo, và đặc biệt là khả năng tích hợp với các hệ thống xử lý tín hiệu nên anten mạch dải cho đến nay ngày càng phát triển trong những lĩnh vực siêu cao tần như anten cho thiết bị di động, WLAN, hệ thống anten thông minh…. Anten mạch dải bản chất là một kết cấu bức xạ kiểu khe.Mỗi phần tử anten mạch dải gồm có các phần chính là phiến kim loại, lớp đế điện môi, màn chắn kim loại và bộ phận tiếp điện. Anten dipole mạch dải (Printed Dipole Antenna), gồm có các tấm dẫn điện giống như anten mạch dải dạng tấm tuy nhiên anten dipole mạch dải gồm có các tấm đối xứng ở cả 2 phía của tấm điện môi.
Phương pháp này dễ thực hiện hơn cách tiếp điện bằng cáp đồng trục, đường mạch dải có độ dài λg/4 để phối hợp trở kháng giữa đường tín hiệu vào từ cổng 50 Ω tới trở kháng vào của anten. Phương pháp đường truyền dẫn được sử dụng cho các trường hợp phiến kim loại có hình dạng đơn giản, còn phương pháp hốc cộng hưởng mở rộng được áp dụng cho các trường hợp được áp dụng cho các trường hợp phiến kim loại có hình dạng phức tạp. Theo phương pháp đường truyền dẫn, mỗi anten mạch dải hình chữ nhật có thể được mô tả tương đương với 2 khe bức xạ, mỗi khe có chiều dài W (bằng độ rộng của tấm mạch dải) và đặt song song cách nhau một khoảng L.
Hiện nay ngoài các phương pháp trên còn có phương pháp FDTD, phương pháp này được công bố bởi Yee năm 1966 là phương pháp đơn giản nhưng hữu hiệu để rời rạc phương trình vi phân của hệ phương trình Maxwell.FDTD đặc biệt có thể mô phỏng những hiện tượng điện từ tác động ngẫu nhiên hay các tham số tác động lên anten.[2]. Trước tiên ta bắt đầu với ba thông số bắt buộc cơ bản đó là: tần số hoạt động (tần số cộng hưởng này có thể chọn tuỳ vào từng ứng dụng), hằng số điện môi, độ dày điện môi.
Các thành phần LH là điện dung CL được tạo nên từ khoảng cách các cell đơn vị và điện cảm LL được tạo nên từ dòng điện chạy qua các sợi hình trụ bán kính r. Còn các thành phần RH là điện dung CR được tạo nên từ điện thế giữa các ô kim loại với mặt phẳng đất và điện cảm LR được tạo nên từ biến đổi dòng điện qua các ô kim loại. Bằng cách thay đổi đặc tính vật lý của các cell đơn vị hình nấm ( kích thước ô kim loại, bán kính sợi trụ, hằng số điện môi ..) ta có thể điều chỉnh được điện cảm và điện dung.
Kích thước của ô kim loại, hằng số điện môi, chu kỳ của cell đơn vị và bán kính của sợi trục là các nhân tố ảnh hưởng đến đường cong phân tán và tần số cộng hưởng của anten. Nếu tăng diện tích ô kim loại hoặc hằng số điện môi sẽ làm tăng điện dung CR trong khi nếu giảm bán kính sợi trục sẽ làm tăng điện cảm LL Để chứng minh là tần số cộng hưởng không phụ thuộc vào kích thước của anten ta lần lượt sẽ thiết kế anten 2 cell, 4 cell và so sánh có sự thay đổi hay không. Và sau đó ta sẽ chứng minh rằng trong trường hợp điều kiện bờ hở thì tần số bước sóng vô hạn chỉ phụ thuộc vào cộng hưởng song song còn các thành phần nối tiếp không ảnh hưởng bằng cách cho các cell nối liền vào nhau (inductor-loaded TL).
Trước tiên ta bắt đầu với tần số bước sóng vô hạn tuỳ vào ứng dụng mà ta chọn, trong trường hợp này chọn f0 = 2GHz. Với h là độ dày chất nền (inches), w là chiều rộng của cell (inches) và b là chiều dài của cell (inches). Ngoài ra vẫn ở tần số này nếu tăng kích thước anten lên (tăng số lượng cell đơn vị) thì nó vẫn không đổi vì theo (3.66) β không phụ thuộc vào L (chiều dài chu kỳ cell) hay không phụ thuộc vào N (số lượng cell).
Như vậy nếu ta tiếp tục tăng số lượng cell lên thì ta sẽ được nhiều mode cộng hưởng hay có thể nói anten này hoạt động được ở nhiều dải tần. Với cấu hình anten loại này thì tần số bước sóng vô hạn cũng không thay đổi có chăng thì bị dịch đi một ít so với thiết kế, còn mode cộng hưởng khác chỉ có mode cộng hưởng dương (không hỗ trợ sóng nghịch) khác so với cấu hình anten CRLH TL là có cả mode cộng hưởng âm lẫn dương. Và như vậy từ các kết quả trên có thể thấy tần số bước sóng vô hạn không phụ thuộc vào cộng hưởng nối tiếp nó chỉ phụ thuộc vào cộng hưởng song song.
Đối với anten mạch dải thông thường như đã biết thì tần số cộng hưởng phụ thuộc chặt chẽ vào kích thước của anten ví dụ như anten mạch dải hình chữ nhật ta có thể thấy qua công thức (2.5),(2.7) và (2.9). Nếu giảm hằng số điện môi sẽ làm giảm CRvào theo (4.1) sẽ làm tăng tần số cộng hưởng song song ngoài ra nó còn làm tăng cả băng thông nữa. Để thấy rừ hơn ta sẽ thiết kế anten với cỏc thụng số như trờn nhưng với giảm hằng số điện môi xuống còn là εr = 4.2.