Xác định một số thông số đặc trưng của chùm electron năng lượng dùng trong xạ trị

MỤC LỤC

Quá trình phát bức xạ hãm

Với một môi trường xác định, khi năng lượng của chùm electron còn nhỏ thì độ mất mát năng lượng do ion hóa và kích thích môi trường chiếm ưu thế, hay tỷ số giữa độ mất mát năng lượng do bức xạ hãm với độ mất mát năng lượng do ion hóa và kích thích môi trường nhỏ hơn một. Khi năng lượng của hạt electron lớn hơn năng lượng tới hạn rất nhiều, sự mất mát năng lượng do quá trình bức xạ chiếm tỉ lệ lớn, nghĩa là hạt electron mất mát năng lượng chủ yếu do phát bức xạ hãm.

Quãng chạy của chùm electron trong vật chất

Trong thực nghiệm người ta đi xây dựng một hệ thống số liệu về chiều dài làm chậm bức xạ của từng nguyên tố để làm cơ sở tính chiều dài làm chậm của các môi trường phức tạp. Từ khái niệm về chiều dài làm chậm bức xạ, ta có thể đưa ra công thức tính năng lượng trung bình của hạt electron sau khi đi được đoạn đường trong môi trường có chiều dài làm chậm bức xạ X0 là [9].

Hiệu ứng sinh học của electron

Cấu tạo tế bào của cơ thể người

Khi bị chiếu xạ, phân tử H2O bị ion hóa, phân chia thành các cặp H+ và OH-, các ion này bị kích thích lại tạo ra các ion khác,… Năng lượng của bức xạ khi đi qua cơ thể người càng lớn thì số lượng ion tạo ra càng nhiều. * Làm sai sót nhiễm sắc thể dẫn tới việc tế bào bị chết hoặc bị biến đổi chức năng hoặc gây đột biến gen, đó là do các tổn thương sau đó có thể làm mất hoặc sắp xếp lại các vật chất di truyền trên phân tử AND.

Tương tác của bức xạ ion hóa với cơ thể sống

Tuy nhiên ở liều cao hơn, khả năng sửa chữa của tế bào đạt ở mức bão hòa, tỷ lệ sống sót giảm rất nhanh theo quy luật hàm mũ. Cùng với một liều lượng bức xạ, nếu cơ thể hấp thụ làm nhiều lần, thì các biến đổi về bệnh lý ít xảy ra hơn so với trường hợp hấp thụ ngay một lúc.

Hình 1.3: Mối tương quan giữa liều lượng hấp thụ và tỷ lệ sống sót của tế bào
Hình 1.3: Mối tương quan giữa liều lượng hấp thụ và tỷ lệ sống sót của tế bào

Phương pháp xạ trị dùng chùm electron

    Bác sĩ điều trị phải cùng làm việc chặt chẽ với đội ngũ vật lý, kế hoạch điều trị và bộ phận đo lường, không thể nhầm lẫn được khi đánh giá lâm sàng, hiểu sai về những quan niệm vật lý, không hoàn hảo về phác đồ điều trị và thực hiện phác đồ. Có ba cách thực hiện kỹ thuật này: Cách thứ nhất dùng tấm áp bề mặt để điều trị các vùng như da mặt, vùng đầu, vùng cổ,…; Cách thứ hai là dùng các applicator để điều trị ở các khoang tự nhiên của cơ thể; Cách thứ ba người ta sử dụng các kim cắm trực tiếp vào trong các khe, kẽ, trong mô,…. Phương pháp này được tiến hành với chùm photon từ nguồn phát như nguồn Co60 hoặc chùm phát tia X năng lượng cao được tạo bởi chùm electron đã được gia tốc bởi máy gia tốc tuyến tính lái cho đập vào bia, cũng có thể dùng trực tiếp chùm electron đã được gia tốc phát ra từ máy gia tốc.

    Tuy nhiên trong các loại máy gia tốc này cho năng lượng hoặc là ở mức độ thấp hoặc năng lượng cao nhưng suất liều ở đầu ra của chùm tia còn thấp, mặt khác chúng lại khá cồng kềnh nên không thuận tiện cho việc sử dụng trong các kĩ thuật điều trị đồng tâm. Ở Việt Nam, máy gia tốc trong xạ trị được đưa vào sử dụng đầu tiên vào tháng 01 năm 2001, tại Bệnh viện Ung Thư Trung Ương tạo ra hiệu quả điều trị ung thư rất cao, hầu hết bệnh nhân điều trị đều cho kết quả điều trị rất tốt.

    Hình 1.5:  Mô hình hệ thống xạ trị cơ bản
    Hình 1.5: Mô hình hệ thống xạ trị cơ bản

    MÁY GIA TỐC PRIMUS – SIEMENS DÙNG TRONG XẠ TRỊ

    Nguyên lý làm việc của máy gia tốc electron

      Buồng tăng tốc có dạng cấu trúc dẫn sóng ở đó năng lượng cung cấp cho electron được lấy từ bộ phát sóng siêu cao tần với tần số khoảng 3000 Mhz. Hệ thống ống dẫn sóng và súng electron được hút chân không sao cho các electron gia tốc có thể chuyển động trong đó mà không bị va chạm với nguyên tử khí. Đó là do lực đẩy Coulomb giữa các electron mang điện tích cùng dấu, do sự lắp ghép không hoàn hảo làm cho cấu trúc ống dẫn sóng không hoàn toàn xuyên tâm, do tác động của điện từ trường ngoài,… Do đó, chùm electron gia tốc phải được lái một cách chủ động.

      Sau đó các cuộn lái tia tạo ra từ trường tác dụng lực lên các electron để dẫn chùm tia đi đúng theo hướng ống dẫn sóng từ đó hướng ra ngoài theo đường cong nào đó hoặc được uốn để hướng đến bia tạo tia X. Sau đó được tán xạ trên các lá tán xạ hoặc được một từ trường quét ra trên một diện rộng theo yêu cầu của hình dạng, diện tích trường chiếu trong các trường hợp điều trị cụ thể.

      Sơ đồ nguyên lý của máy gia tốc PRIMUS - SIEMENS dùng trong xạ trị 1. Nguyên lý gia tốc thẳng

        Chọn chiều dài ống C1 là l1 thớch hợp để electron đi trong ống C1 mất ẵ chu kỳ thỡ đến đầu kia của C1, điện trường tại hai đầu C1 và C2 đổi chiều khi đó electron chuyển từ C1 đến C2 được gia tốc và động năng tăng thêm eU. Như vậy có thể nói rằng nếu ta có một hệ thống gồm một lượng lớn điện cực có kích thước phù hợp với một hiệu điện thế U nhỏ chúng ta có khả năng cung cấp cho hạt một năng lượng rất lớn. Tủ điều chế chứa các thành phần phân bố và điều khiển nguồn điện sơ cấp tới tất cả các vị trí của máy từ các kết nối, cung cấp các xung cao áp cho việc phun chùm tia và cho phát công suất vi sóng.

        Các electron, phát ra từ súng điện tử, được gia tốc trong ống dẫn sóng gia tốc và sau đó được mang dưới dạng một chùm tia hình bút chì, qua hệ thống vận chuyển chùm tới đầu điều trị máy gia tốc, trong đó các photon và chùm electron lâm sàng được tạo ra. Như minh họa ở Hình 2.5 đầu điều trị máy gia tốc tuyến tính gồm vài thành phần, các thành phần đó ảnh hưởng đến việc hình thành, tạo dạng, định vị và theo dừi chựm tia lõm sàng [2].

        Hình 2.2a:  Sắp xếp các ống tạo sự gia tốc
        Hình 2.2a: Sắp xếp các ống tạo sự gia tốc

        Phương pháp thực nghiệm xác định một số thông số đặc trưng của chùm electron từ lối ra của máy gia tốc PRIMUS – Siemens

        • Các thiết bị đo

          Phần thực nghiệm của luận văn tiến hành đo phân bố liều trên máy gia tốc xạ trị PRIMUS tại bệnh viện K Hà Nội, sử dụng thiết bị đang được dùng để kiểm tra liều chiếu hàng ngày tại đây. Phổ năng lượng của chùm electron tại cửa sổ ra của đầu máy gia tốc có thể được đặc trưng bởi số các thông số [16] như: năng lượng lớn nhất (Emax,a); năng lượng trung bình của electron. Các đại lượng E0, Ep,0 được xác định dựa trên vào các công thức bán thực nghiệm mô tả mối liên hệ giữa năng lượng electron và thông số khoảng cách được xác định trên đường cong phân bố liều hấp thụ theo chiều sâu trong phantom nước.

          Khoảng cách thực tế Rp và nửa giá trị độ sâu R50 là đặc biệt quan trọng đối với sự đo năng lượng Rp là chiều sâu mà tại đó hầu như các electron đã bị hấp thụ, chỉ còn lại bức xạ hãm. Đại lượng Rp được xác định từ đường cong phân bố liều hấp thụ theo chiều sâu trong nước ứng với khoảng cách từ đầu ra của chùm electron từ máy gia tốc đến bề mặt phanton nước  1m.

          Hình 2.6: Thiết bị đo liều Dosimeter
          Hình 2.6: Thiết bị đo liều Dosimeter

          KẾT QUẢ THỰC NGHIỆM VÀ THẢO LUẬN

          Xác định các năng lượng đặc trưng và phân bố liều hấp thụ theo độ sâu của chùm electron

            Từ đường cong liều hấp thụ phần trăm nhận thấy ở độ sâu cỡ 3,4 cm liều hấp thụ do chùm electron gây ra bằng không. Tương tự như chùm electron năng lượng 6 MeV, với chùm năng lượng electron năng lượng 9 MeV, đã tiến hành đo phân bố liều hấp thụ theo chiều sâu trong phantom nước ứng với trường chiếu 5cm x 5cm; 10cm x 10cm và 15cm x 15cm. Từ số liệu trong Bảng 3.2 tiến hành xây dựng đồ thị phân bố liều hấp thụ phần trăm theo chiều sâu trong phantom ứng với kích thước trường chiếu khác nhau.

            Từ đường cong liều hấp thụ phần trăm nhận thấy ở độ sâu cỡ 5,1 cm liều hấp thụ do chùm electron gây ra bằng không. Trong Bảng 3.3 là kết quả đo liều hấp thụ phần trăm phụ thuộc vào chiều sâu của phantom ứng với năng lượng chùm electron năng lượng 15 MeV ứng với các trường chiếu 5cm x 5cm; 10cm x 10cm và 15cm x 15cm. Từ số liệu trong Bảng 3.3 tiến hành xây dựng đồ thị phân bố liều phần trăm theo chiều sâu trong phantom ứng với kích thước trường chiếu khác nhau.

            Từ đường cong liều hấp thụ phần trăm nhận thấy ở độ sâu cỡ 8,4 cm liều hấp thụ do chùm electron gây ra bằng không.

            Bảng 3.2. Liều hấp thụ tương đối do chùm electron 9 MeV gây ra trong phantom ứng với các
            Bảng 3.2. Liều hấp thụ tương đối do chùm electron 9 MeV gây ra trong phantom ứng với các

            Xác định phân bố liều hấp thụ theo khoảng cách tới trục của chùm electron năng lượng 6 MeV, 9 MeV và 15 MeV

              Khi ra ngoài biên liều hấp thụ giảm nhanh: cụ thể tại vị trí cách trục chùm tia 4 cm liều hấp thụ cỡ 424 mGY, còn tại vị trí cách trục 5 cm liều hấp thụ giảm xuống còn khoảng 122 mGY. Khi ra ngoài biên liều hấp thụ giảm nhanh: cụ thể tại vị trí cách trục chùm tia 4 cm liều hấp thụ cỡ 424 mGY, còn tại vị trí cách tâm 5 cm liều hấp thụ giảm xuống còn khoảng 123 mGY. Khi ra ngoài biên liều hấp thụ giảm nhanh: cụ thể tại vị trí cách trục chùm tia 4 cm liều hấp thụ cỡ 451 mGY, còn tại vị trí cách tâm 5 cm liều hấp thụ giảm xuống còn khoảng 117 mGY.

              - Liều hấp thụ giảm nhanh khi ra xa biên trường chiếu, cũng như đặc điểm liều hấp thụ theo phần trăm cho chùm electron gây ra giảm nhanh tới không Rp đã đảm bảo yêu cầu làm giảm tối thiểu ảnh hưởng của tia xạ tới tế bào lành xung quanh. Số liệu thực nghiệm với mọi kích thước khác nhau đã chỉ ra khi ra ngoài biên của trường chiếu liều hấp thụ giảm nhanh tới không có một ý nghĩa rất quan trọng trong việc đúc khuôn chì cho bệnh nhân.

              Hình 3.12: Đường cong phân bố liều hấp thụ theo khoảng cách tới trục của chùm electron 15  MeV ở nhiệt độ 20 0 C áp suất 1 at
              Hình 3.12: Đường cong phân bố liều hấp thụ theo khoảng cách tới trục của chùm electron 15 MeV ở nhiệt độ 20 0 C áp suất 1 at