MỤC LỤC
Quá trình tạo carbohydrate trong thực vật rất phức tạp, do vị trí tạo đường (phần lớn là ở lá cây, được gọi là nguồn) và vị trí tích lũy hoặc sử dụng đường (ví dụ: hoa, củ.. được gọi là vật chứa) tách rời nhau và vì vậy phần lớn đường tạo ra ở dạng saccharose, được vận chuyển trong thực vật. Ví dụ: một gen từ Umbellularia californica mã hóa cho enzyme thioesterase được đưa vào cây cải dầu, đã tăng hàm lượng lauric acid (CH3(CH2)10COO-), thuận lợi cho việc sản xuất bơ. Đặc biệt trong thức ăn gia súc chủ yếu là đậu tương và ngô, phải bổ sung các amino acid được sản xuất bằng phương pháp lên men như lysine, methionine, threonine và tryptophan.
Một trong những thành công đầu tiên là tạo dòng ngô đột biến có cân bằng amino acid tốt hơn (hàm lượng protein cao hơn) có tên là Opaquez, có hàm lượng lysine cao hơn (tăng 32% so với đối chứng). Thế hệ con sinh ra nhờ lai hai loại cây trên biểu hiện được một kháng thể hoạt động gồm hai loại mạch với hàm lượng cao (chiếm 1,3% protein tổng số của lá) và có tất cả các đặc tính của một kháng thể đơn dòng sản sinh từ hybridoma. Gần đây đã thành công ở cây lúa biến đổi gen, có đủ hàm lượng β-carotene (trong cơ thể người nó được biến đổi dễ dàng thành vitamin A) và hàm lượng Fe hấp thu được cũng cao hơn.
Ở hạt gạo không chứa β-carotene, nhưng người ta thấy có hợp chất geranyl- geranylpyrophosphate, chất này được biến đổi thành β-carotene trong một trình tự gồm 4 phản ứng enzyme. Tuy nhiên, những hạt không nảy mầm hoặc động vật trong hệ thống tiêu hóa không có phytase hoạt động ở mức độ đáng kể thì động vật phải sử dụng phosphate rất nghèo trong hạt. Người ta cũng tìm thấy hai gen từ thực vật, một gen làm tăng sự tích lũy Fe trong gạo (ferritin) và gen khác tăng sự hấp thu Fe (protein giàu cystein, tương tự metallothionine) trong cơ thể người.
Một nghiên cứu gần đây đã công bố một bước đột phá trong lĩnh vực sản xuất vaccine từ thực vật, đó là kết quả nghiên cứu của Thanavala và Arntzen (Mỹ) về khả năng gây miễn dịch trong cơ thể người bằng vaccine thực phẩm để điều trị bệnh viêm gan B.
Khi người ta chuyển 3 gen mã hóa cho poly (3HB) có nguồn gốc từ Ralstonia eutropha vào lạp thể của arabidopsis thaliana thì thu được cây phát triển bình thường và sản sinh ra poly (3HB) và chất này đạt đến 14% trọng lượng khô. Ở Arabidopsis thaliana và cây cải dầu, chất trung gian để tổng hợp chất béo và amino acid được biến đổi để tổng hợp plastic có hiệu quả hơn. Việc sản xuất protein trong thực vật dễ dàng, nhưng làm sạch protein từ mô thực vật là khó khăn và trước hết là giá thành cao.
Tiếp theo protein tạo thành có một hệ thống tín hiệu, đảm bảo cho nó được vận chuyển vào một vị trí xác định trong tế bào. Năm 1999, lần đầu tiên đã thành công trong sử dụng cây chuyển gen để phân giải TNT ( ), trong đó người ta tạo dòng một enzyme vi khuẩn (pentathritol-tetranitratreductase) trong cây thuốc lá, enzyme này phân giải TNT và chất tương tự GTN thành những chất không độc. Tiếp theo người ta đã chuyển một gen vi khuẩn mã hóa cho enzyme phân giải thủy ngân Hg-reductase vào cây họ hàng với mộc lan.
Với hệ thống rễ một số loại thực vật có thể hút các kim loại và tích lũy trong các phần trên mặt đất của nó, những phần này sau đó được loại trừ dễ dàng. Một đường hướng để nâng cao các quá trình tự nhiên là tăng cường hô hấp của cây, vì kim loại nặng cùng với dòng nước đi lên các bộ phận trên mặt đất.
Trong tiến trình lịch sử con người đã sử dụng khoảng 13.000 loài thực vật dược liệu và ngày nay nhiều sản phẩm thực vật còn đóng một vai trò quan trọng trong y học. Một số gen mã hóa cho enzyme tổng hợp alkaloid đã được biết và đã tạo dòng đạt được kết quả đầu tiên, ví dụ ở cây cà diên (Atropa belladonna) enzyme hyoscyamin-6β-hydroxylase biểu hiện đã biến đổi hyoscyamin (tương ứng atropin) thành scopolamin. Trong tương lai thực vật biến đổi gen với sự tổng hợp alkaloid thay đổi càng có ý nghĩa, đặc biệt hơn là những gen của một số đường hướng sinh tổng hợp hoàn toàn đã biết.
Trước đây bệnh đậu mùa, bệnh lao, hoặc bệnh bại liệt là mối nguy hại lớn, ngày nay nhờ các biện pháp phòng ngừa và đặc biệt nhờ tiêm phòng mà ít nhất là ở các nước công nghiệp không còn nữa, tuy nhiên trong các nước đang phát triển vẫn còn là vấn đề. Ưu điểm lớn nhất là sự nhiễm bẩn với virus gây bệnh cho người và những tác nhân gây bệnh khác không xảy ra, vì chúng không tồn tại ở thực vật. Ưu điểm lớn nhất của hệ thống biểu hiện thực vật so sánh với hệ thống vi khuẩn về sản xuất kháng thể là ở khả năng kết hợp và hình thành cấu hình chính xác của protein phức tạp.
Dĩ nhiên là cơ chế kết hợp và hình thành cấu trúc trong ER giữa thực vật và động vật có vú được duy trì, đảm bảo protein có chức năng chính xác. Gần đây, người ta đã thu được kháng thể hoàn chỉnh, ví dụ như kháng thể chống lại Herpes-simplex-virus type 2, một kháng thể của Adenocarcinome ở người và một kháng thể của protein kết dính Streptococus mutants.
Quá trình sinh tổng hợp flavonoid được tổng quát như sau: Bước đầu tiên tổng hợp flavonoid được xúc tác bởi enzyme chalcon-synthase (CHS) và tạo nên 4, 2’,4’,6’-tetrahydroxychalcon (Hình 2.9), chất này tiếp tục được biến đổi thành naringenin nhờ enzyme chalcon-isomerase (CHI). Chúng là những enzyme quan trọng trong việc xác định màu hoa, vì chúng xúc tác cho sự hydroxyl hóa khác nhau của dihydrokaempferol và cuối cùng tạo nên anthocyanidine, chất này được thay đổi bằng cách gắn thêm đường (Glc) hoặc các nhóm thơm (Caf). Cây dã yên thảo biến đổi gen có màu đỏ hồng (cây bình thường không có màu này), được đưa ra từ viện Max-Planck ở Koeln cho nghiên cứu lai tạo là do can thiệp vào sự tổng hợp flavonoid.
Nhờ sản phẩm gen A1 là dihydroflavanol reductase (DFR) mà dihydrokaempferol được khử thành leukopelargonidin, chất này sau đó được biến đổi thành sắc tố pelargonidin màu hồng đỏ nhờ các enzyme trong cây. Khi người ta đã chuyển gen mã hóa chalcone synthase (CHS), một enzyme chủ yếu trong quá trình tổng hợp các sắc tố anthocyanin, vào cây dã yên thảo thì thu nhận được những cây cho hoa màu trắng hoặc đỏ. Nguyên nhân là do gen CHS sau khi được biến nạp đã gắn vào một vị trí bất kỳ trên bộ gen của cây sẽ gây ra hiện tượng “đồng loại bỏ” (co-suppression), ức chế sự biểu hiện của gen CHS nội bào dẫn đến sự hình thành các màu mới.
Công ty Florigen và Suntory đã phát triển hoa cẩm chướng chuyển gen (Moondust TM) màu xanh mà cho đến nay không thể tạo ra được bằng phương pháp lai tạo truyền thống. Ở các tế bào chỉ có gen A biểu hiện thì xuất hiện đài hoa, gen A và B cùng biểu hiện thì xuất hiện cánh hoa, gen B và C cùng biểu hiện thì xuất hiện nhị hoa, chỉ có gen C biểu hiện thì xuất hiện nhụy hoa.
Tuy nhiên không thể sử dụng được cây bất dục đực trong mọi trường hợp, vì một số loài thực vật chưa biết hệ thống CMS và một số hệ thống CMS không ổn định dưới những điều kiện thời tiết nhất định, do bị ảnh hưởng bởi những biến động về sinh lý. Bên trái: Cây trong đó gen mã hóa cho Barnase được biến nạp dưới sự điều khiển của promoter đặc hiệu tapetum, là bất dục vì Barnase phân giải RNA trong tế bào tapetum, làm cho tế bào này chết. Enzyme này được vi khuẩn thải ra môi trường xung quanh và có khả năng phân giải RNA của các vi khuẩn cạnh tranh.
Nhờ sự biểu hiện của Barnase trong các tế bào tapetum mà RNA của các tế bào này được phân giải và tế bào tapetum chết. Cho mục đích thương mại ở các cây trồng khác, điều cần thiết là cây thế hệ sau của các cây bất dục đực là cây hữu dục, thì quả và hạt mới được tạo thành. Trong thế hệ sau của phép lai của thực vật với sự biểu hiện đặc hiệu tapetum của Barnase và Barsta xuất hiện cây hữu dục, vì Bastarprotein tạo một phức chất với Barnase và Barnase sau đó bất hoạt (Hình 2.11).
Promoter đặc hiệu tapetum được điều khiển chính xác trong nhiều thực vật một và hai lá mầm và vì vậy hệ thống này được ứng dụng trong nhiều thực vật như cây củ cải dầu, cà chua hoặc ngô. Người ta phun N-acetyl-L- Phosphinothricin vào thời điểm cây nở hoa, hợp chất này không độc và được biến đổi thành L-Phosphinothricin, một glufosinate ở trong các tế bào tapetum đã làm chết các tế bào này.