Ứng dụng mạng nơron trong khắc độ tự động cảm biến và thiết bị đo

MỤC LỤC

Phương pháp khắc độ các chuyển đổi đo lường sơ cấp .1 Chuyển đổi đo lường so cấp

Ứng dụng vi xử lý trong xử lý số liệu đo của cảm biến [TL3]

+ Nếu các chuyển đổi là loại chuyển đổi sơ cấp bình thường thì các đầu ra của chúng được đưa vào một vi mạch công nghệ lai, gồm bộ biến đổi chuẩn hoá, MUX, A/D và vi xử lý trong một khối có truyền thông với máy tính và bộ nạp chương trình cho EPROM. Với sự phát triển mạnh mẽ của lĩnh vực mạng nơron nhân tạo, các giải pháp nơron đã được ứng dụng vào nhiều lĩnh vực nhằm thông minh hoá thiết bị như các hệ thống điều khiển, robot, các thiết bị gia dụng, phân loại sản phẩn, các hệ thống nhận dạng, phân tích tài chính v.v.

Ứng dụng mạng nơron trong cảm biến thông minh .1 Khắc độ tự động cảm biến

Hiệu chỉnh đặc tính thang đo và cảm biến

Các cảm biến trong quá trình chế tạo hoặc sau một thời gian sử dụng đều mắc phải sai số hệ thống và sai số ngẫu nhiên, trong đó sai số hệ thống là sai số của phép đo luôn không đổi hoặc thay đổi có quy luật khi đo nhiều lần một đại lượng đo và sai số ngẫu nhiên là thành phần sai số của phép đo thay đổi không theo một quy luật nào cả mà ngẫu nhiên khi lặp lại phép đo nhiều lần một đại lượng duy nhất, có thể hình dung như hình 1.11. Ta có một nhận xét quan trọng là phương pháp tuyến tính hoá đường cong thực tế mắc phải một sai số hồi phục trong khi sử dụng mạng nơron có thể xấp xỉ chính xác hàm chuyển đổi với độ chính xác tuỳ ý mà không phải tuyến tính hoá đường cong thực tế, do đó sẽ giảm được sai số hệ thống và cho độ chính xác cao hơn.

Hình 1.13: Hiệu chỉnh đường đặc tính thực tế
Hình 1.13: Hiệu chỉnh đường đặc tính thực tế

Đề xuất phương pháp sử dụng mạng nơron để giảm sai số ngẫu nhiên và khắc độ bằng hàm nội suy Lagrange

Do các hàm Y1= φ(Y2) và X1=ϕ(X2) đều là hàm đơn trị, đồng biến hoặc nghịch biến nên ta có thể sử dụng những mạng nơron khá đơn giản đủ để thoã mãn yêu cầu bài toán đặt ra. Từ đó cho phép chúng ta tạo ra được những hệ thống thông minh có thể giải quyết nhiều vấn đề phức tạp trong đo lường, điều khiển tự động, hệ thống chuyên gia, công nghệ robot.v.v.

Nơron sinh vật

Cấu trúc cơ bản của nơron

Việc nghiên cứu bộ não người theo khía cạnh giải phẫu học, tâm lý học, thần kinh học để hiểu biết các nguyên tắc hoạt động của bộ não là rất cần thiết. Mỗi tế bào thần kinh nhận nhiều đầu vào (khoảng 104) qua các dây thần kinh vào (dendrite) và sau vài quá trình xử lý tạo ra một tín hiệu đầu ra truyền dọc theo dây thần kinh ra (axon).

Hình 2.2: Cấu trúc một nơron sinh học
Hình 2.2: Cấu trúc một nơron sinh học

Các tín hiệu điện của nơron

Tính chất thứ hai gọi là thời gian hồi phục, là thời gian ngắn nhất cần thiết để tạo hai điện thế hoạt động thành công trên dây thần kinh ra như hình 2.5. Chẳng hạn, kích thích với cường độ cao sẽ thu được thời gian hồi phục nhỏ và thời gian tăng ngắn, do đó tạo ra điện thế hoạt động có tần số cao.

Mô hình nơron nhân tạo

Nó cũng có thể xuất hiện giữa các dây thần kinh ra hoặc giữa các dây thần kinh vào, thậm chí nằm giữa dây thần kinh ra và thân nơron. Do đó, nếu cung cấp kích thích với ngưỡng không đổi thì thời gian tăng và thời gian hồi phục sẽ điều khiển tần số của các xung đầu ra.

Mạng nơron nhân tạo .1 Cấu trúc mạng nơron

Phân loại mạng nơron

- Dựa vào số lớp có trong mạng nơron ta có thể phân loại thành : mạng nơron một lớp; mạng nơron nhiều lớp.

Một số mạng nơron nhân tạo .1 Mạng nơron truyền thẳng

    Luật học perceptron được đảm bảo hội tụ đến một lời giải cho phép phân nhóm đúng đắn các mẫu huấn luyện, mạng thu được có thể nhạy với nhiễu vì các mẫu thường nằm ở gần các biên quyết định. Thuật học LMS cực tiểu hóa sai số bình phương trung bình do đó cố gắng dịch chuyển các biên quyết định ra xa các mẫu huấn luyện nhất có thể tránh được ảnh hưởng của nhiễu. Một số kỹ thuật về tối ưu hóa số đã áp dụng thành công cho mạng nơron nhiều lớp là : thuật toán gradient liên hợp và thuật toán Levenberg-Marquardt (LM- một phiên bản khác của phương pháp Newton).

    Mạng có khả năng dùng làm bộ nhớ các mẫu lệnh để sau đó gọi lại.Mạng cũng có thể dùng trong hệ nhận dạng các tham số, làm các suy diễn mờ trong điều khiển thông minh, mở ra những lớp bài toán cho nhiều lĩnh vực khác nhau.

    Hình 2.9: Mô hình mạng nơron truyền thẳng một lớp
    Hình 2.9: Mô hình mạng nơron truyền thẳng một lớp

    Học của mạng nơron

    Một luật học hiệu quả và được sử dụng rộng rãi trong lĩnh vực mạng nơron là thuật toán lan truyền ngược cũng nằm trong nhóm này với các trọng số và ngưỡng được cập nhật theo luật xấp xỉ giảm dốc nhất. Điểm khác nhau là luật học Delta thay đổi các giá trị của trọng trong thời gian học, còn luật học Perceptron thêm hoặc bỏ trọng tuỳ theo giá trị sai số đầu ra là dương hay âm. Học củng cố được thực hiện trên thông tin phản hồi hai trạng thái đúng hoặc sai và tín hiệu mang thông tin phản hồi được gọi là tín hiệu cũng cố cho quá trình học.

    Nếu coi cấu trúc mô hình mạng là phần xương thịt, thể xác thì các luật học là phần trí tuệ thông minh của mạng nơron và các công trình nghiên cứu luật học chiếm số lượng lớn nhất trong mấy chục năm qua.

    Một số ứng dụng mạng nơron nhân tạo

    So với phương pháp sử dụng mạng nơron khác dùng để tổng hợp hệ tuyến tính, phương pháp này có ưu điểm là tự động cả đặt cực và tối thiểu chuẩn mà không cấn huấn luyện trước. Đây là một phương pháp tổng hợp mạng kết hợp với tiêu chuẩn ổn định Liapunov để xác định các hệ số trọng của mạng liên tục cho từng phần tử nơron, mỗi nơron chỉnh một tham số của bộ PD. Trên cơ sở phân tích ưu điểm của mạng nơron RBF là khả năng sinh và diệt nơron tác giả đưa ra nhận định khả năng ứng dụng nó vào quá trình điều khiển thích nghi các hệ thống phi tuyến có cấu trúc thay đổi.

    + Mạng nơron đã dần được ứng dụng vào các lĩnh vực truyền thông như nhận dạng kênh, mô hình hoá kênh, mã hoá và giải mã, hiệu chỉnh kênh, phân tích phổ, lượng tử hoá véc tơ.

    Giảm sai số ngẫu nhiên bằng mạng nơron để khắc độ tự động thiết bị đo và cảm biến

    Xử lý số liệu đo bằng mạng nơron để giảm sai số ngẫu nhiên Xét đường đặc tính của cảm biến có dạng y=x 2

    Ứng với các tập giá trị đo ngẫu nhiên X tại điểm lấy mẫu thứ k, ta sử dụng mạng nơron hai lớp và thuật học lan truyền ngược để huấn luyện mạng cho ra kết quả chính xác gần với Xk. Ta kiểm tra lại kết quả bằng cách lấy m=10 giá trị ngẫu nhiên tại mỗi điểm cho vào mạng nơron đã huấn luyện để được giá trị đầu ra X*k, Y*k thoã mãn : X*k −Xk <. Nhận xét: Sai số tuyệt đối lớn nhất của giá trị đầu ra của mạng nơron so với giá trị đúng của biến X là 1,1x10-5 trong khi đó sai số tuyệt đối lớn nhất giữa giá trị trung bình và giá trị đúng là:0,026.

    Từ các kết quả đầu ra mạng sau khi đã được huấn luyện Xk*,Yk*, có thể tiến hành khắc độ tự động bằng một số phương pháp như phương pháp tuyến tính hóa, phương pháp nội suy Lagrange hoặc sử dụng mạng nơron.

    Hình 3.7: Lưu đồ thuật toán qúa trình học
    Hình 3.7: Lưu đồ thuật toán qúa trình học

    Khắc độ tự động thiết bị đo và cảm biến .1 Khắc độ tự động bằng mạng nơron

    Sử dụng hàm nội suy Lagrange để khắc độ tự động

    Trong luận văn này tôi đề xuất phương pháp dùng hàm nội suy Lagrange với lý do hàm này sẽ đi qua tất cả những điểm lấy mẫu Xk*,Yk*. Ta thay các giá trị (Xk,Yk) bằng các giá trị (Xk*,Yk*) đã tìm được ở trên vào phương trình Lagrange để có đường đặc tính cần tìm của cảm biến. Từ các giá trị đã được xử lý để giảm sai số ngẫu nhiên bằng mạng nơron, có thể dùng hàm nội suy Lagrange để tiến hành khắc độ đường đặc tính của cảm biến đạt độ chính xác cao.

    Ngoài ra phương pháp này còn cho phép giảm khối lượng tính toán cũng như dung lượng bộ nhớ chương trình và đơn giản, dễ ứng dụng trong thực tế.

    Hình 3.19: Đường sai số giữa hai đường đặc tính  Hình 3.18: Đường đặc tính cảm biến dùng hàm nội suy Lagrange
    Hình 3.19: Đường sai số giữa hai đường đặc tính Hình 3.18: Đường đặc tính cảm biến dùng hàm nội suy Lagrange

    Hiệu chỉnh đặc tính thang đo và cảm biến sử dụng mạng nơron Xét bài toán thực tế

    Luận văn đã trình bày tổng quan các phương pháp khắc độ thiết bị đo và cảm biến bao gồm khắc độ dụng cụ đo tương tự, khắc độ dụng cụ đo có sử dụng vi xử lý hoặc máy tính và khắc độ chuyển đổi đo lường sơ cấp. Phần lý thuyết cơ sở của mạng nơron đã trình bày những hiểu biết về nơron sinh học đến khái niệm mạng nơron nhân tạo, nêu ra những mạng nơron nhân tạo với các thuật học làm cơ sở cho các nghiên cứu ứng dụng mạng nơron trong việc chế tạo cảm biến thông minh. Hướng nghiên cứu tiếp theo từ cơ sở những nghiên cứu của luận văn này là ứng dụng mạng nơron để giảm đồng thời sai số ngẫu nhiên và sai số hệ thống của cảm biến và ứng dụng vào việc chế tạo cảm biến và thiết bị đo với độ chính xác cao.

    Trong đó mạng nơron dùng để xử lý số liệu giảm sai số ngẫu nhiên đã được nghiên cứu ở chương 3 là mạng truyền thẳng, có hai lớp với lớp vào sử dụng hàm truyền sigmoid lưỡng cực và lớp ra sử dụng hàm truyền tuyến tính.

    Bảng 4.1 : Kết quả mô phỏng sai số phụ thuộc số điểm lấy mẫu
    Bảng 4.1 : Kết quả mô phỏng sai số phụ thuộc số điểm lấy mẫu