MỤC LỤC
Muốn cho môi trường hoạt tính làm việc ta phải tạo nên vùng đảo hạt ở mức năng lượng cao. Để làm được việc đó chúng ta phải cung cấp cho môi trường hoạt tính một năng lượng. Nguồn sáng đèn: phương pháp này thường được sử dụng với các laser rắn, nguồn ánh sáng gồm một hay nhiều đèn xenon.
Để tập trung ánh sáng từ các đèn lên môi trường hoạt tính người ta dùng hệ thống gương phản chiếu. Nguồn kích thích dòng điện: đối với môi trường hoạt tính khí người ta thường dùng dòng điện cao tầng để tạo nên môi trường phóng điện ion hóa. Đối với dòng điện một chiều hay tần số thấp người ta phải đưa điện cực trực tiếp vào môi trường khí.
Bộ cộng hưởng quang học : sau khi tạo được lớp đảo, môi trường hoạt tính trở thành môi trường khuyếch đại ánh sáng. Bộ cộng hưởng quang học đóng vai trò này và là bộ phận hướng tia ánh sáng chọn lọc. Trên bề mặt phản chiếu của gương có phủ một lớp kim loại hoặc một lớp điện môi.
Trong trường hợp gương làm bằng kim loại phải khoan một lỗ cho ánh sáng đi qua, trong laser khí gương cộng hưởng nằm ở hai đầu ống. Đối với laser rắn gương hoạt tính đồng thời là hai mặt của thanh hoạt tính. Ngoài các gương nói trên, bộ cộng hưởng quang học còn có những phần phụ kèm theo như lăng kính có nhiệm vụ lọc ánh sáng.
Bằng cách tập trung năng lượng tại một điểm trong vùng gia công, mật độ năng lượng tại điểm đó sẽ tăng lên rất cao, và do đó nhiệt độ tại đó cũng lên rất cao. Tùy theo mục đích và yêu cầu kỹ thuật mà nhiệt độ sẽ được đều chỉnh cho phù hợp.
Nhiệm vụ của nó là tập trung các tia laser tại một điểm hay các vùng nhỏ, làm cho mật độ năng lượng và nhiệt độ tại điểm đó tăng cao cục bộ. + Bộ lọc: Do máy phát tia laser không có duy nhất một bước sóng mà thể có nhiều bước sóng khác nhau. Trên hình 5.14 ta thấy thanh hồng ngọc đặt trong vòng xoắn của đèn bức xạ được cung cấp điện từ bộ cung cấp và điều khiển điện.
Khi làm việc, do sự kích thích của thanh hồng ngọc, tia sáng phát ra và hướng ra ngoài từ một đầu của thanh hồng ngọc. Khi một vật bị kích thích bởi một nguồn năng lượng từ bên ngoài, các nguyên tố hoạt tính trong năng lượng đó được đưa lên một mức năng lượng cao hơn, nhưng ở mức năng lượng này độ bền vững rất kém nên khi ngưng kích thích thì chúng có xu hướng tụt xuống mức năng lượng thấp hơn. Lúc đó thế năng của chúng giảm đi, đồng thời mỗi nguyên tử hoạt tớnh phỏt ra 1 hoặc 2 lượng tử tuỳ theo quỏ trỡnh tụt xuống là tự phỏt hay cươừng bức.
Để tạo tia laser trên vật thể rắn ta có thể sử dụng các tinh thể của các khoáng chất khác nhau hoặc thủy tinh với các tạp chất của các nguyên tố hiếm, ví dụ: tinh thể hồng ngọc (rubi), thủy tinh (Nd), …. Để tạo nên mật độ năng lượng cao tại vị trí gia công tùy thuộc vào mục đích công nghệ, có thể dùng nhiều biện pháp khác nhau. Khi dùng thấu kính cầu (hình 3.13a) thì tia laser tập trung trên bề mặt gia công là hình tròn nên có thể dùng để gia công lỗ, hàn điểm.
Nếu cung cấp cho chi tiết gia công một chuyển động tương đối phù hợp với hình dạng yêu cầu thì có thể gia công được các lỗ, rãnh hoặc hàn những mối hàn có hình dáng phức tạp. Phương pháp này có ưu điểm là tập trung tồn bộ năng lượng chùm tia vào vị trí gia công, nhưng mật độ năng lượng phân bố không đều, càng xa tâm trục quang mật độ càng thấp dẫn đến lỗ, rãnh sẽ bó côn hoặc hẹp dần theo chiều sâu. Để khắc phục nhược điểm trên, đồng thời dễ dàng tạo ra những mặt định hình phức tạp có kích thước nhỏ có thể sử dụng phương pháp tập trung chùm tia bằng hệ thống những thấu kính và màn chắn tương tự như hệ thống chiếu ảnh (hình 3.14).
Với phương pháp này có thể tạo ra vết tập trung có hình dạng bất kỳ, mật độ năng lượng phân bố đều hôn nên hạn chế được nhược điểm trên, nhưng một phần năng lượng chùm tia bị mất mát qua các màn chắn, làm giảm hiệu suất năng lượng chùm tia. Kích thước gia công phụ thuộc vào tính chất vật liệu gia công, mật độ năng lượng chùm tia, tính chất của hệ thống tập trung năng lượng, thời gian tác dụng chùm tia vào vật gia công hoặc số lượng xung, …. Sau khi tập trung, mật độ năng lượng của chùm tia phân bố không đều trên vết tập trung của nó.
Theo kết quả nghiên cứu của nhiều tác giả thì mật độ năng lượng của chùm tia sau khi tập trung phân bố theo quy luật chuẩn (Gauss) như hình 3.15.
Sự nóng lên, chảy ra và bốc hơi của vật liệu dưới tác động của tia laser phụ thuộc vào tính dẫn nhiệt và lượng nhiệt trên 1 đơn vị thể tích có trên vật liệu. Tốc độ nung nóng tỉ lệ nghịch với nhiệt lượng trên một đơn vị thể tích, vì thế yếu tố quan trọng của dòng nhiệt là độ khuyếch tán nhiệt của vật liệu gia công. Giá trò này quyết định đến tốc độ mà một vật liệu sẽ nhận và truyền dẫn năng lượng và độ khuyếch tán nhiệt cao sẽ cho nhiệt độ xuyên nóng chảy lớn hơn với nguy cơ rạn nứt nhỏ.
Năng lượng của tia laser được hấp thụ bởi mặt phẳng của kim loại được gia công và năng lượng này sẽ được chuyển vào vùng cắt dưới dạng nhiệt, năng lượng này sẽ gia tăng nhiệt độ tới điểm núng chảy và bay hơi. Bề rộng của vết cắt, chất lượng của cạnh cắt, các phụ phẩm (như xỉ) tập trung phụ thuộc vào sự lựa chọn tia, chất lượng tia, năng lượng phân bố và kiểu di chuyển gia công (tia di chuyển, phôi di chuyển, hay kết hợp sự di chuyển của cả hai). Khoảng bề dày cắt có hiệu quả kinh tế cao nhất lên tới 12,5 mm các kim loại phản xạ ánh sáng laser với phần trăm gia tăng tương ứng khi bước sóng của tia tăng với mật độ năng lượng cao được tạo bởi các tia laser CO2 năng lượng cao sẽ khắc phục được những ảnh hưởng của phản xạ này.
Khi cắt bằng laser, một thông số quan trọng là bề rộng vết cắt thông thường bằng hoặc lớn hơn tia laser một chút, nên việc điều khiển tia laser rất quan trọng. Sự điều khiển tiêu điểm tia, vị trí tiêu điểm và tốc độ cắt tạo ra những sự khác nhau về độ cứng mà gần như không thể nhận biết được với các loại thép có bề dày lên tới 2 mm. Với việc cắt bằng laser CO2 dạng xung, giá trò độ sâu này nhỏ hơn 0,1mm và làm cho loại này trở nên có lợi đối với các loại dụng cụ sử dụng đầu nút.
Một thiết bị để phun khí thường là vòi phun (khụng khớ neựn) để thoồi cỏc sản phẩm phụ ra khỏi vựng cắt, một thiết bị để tựy theo vết cắt có dạng prôphin bất kỳ. Các hiệu ứng nhiệt còn lại (do phi kim dẫn nhiệt kém) của quá trình này làm xuất hiện nhiều khó khăn hơn so với cắt kim loại và giới hạn các ứng dụng của laser trong việc xử lý phi kim loại. Tốc độ cắt phụ thuộc vào năng lượng laser, bề dày vật liệu, các thành phần khí, nước trong vật liệu các vật liệu polime nhiệt đều được cắt bởi sự nóng chảy và đẩy các vật liệu nóng chảy ra khỏi vùng cắt.
Các polime cĩ thể được cắt bằng sự đốt cháy hay phân rã hố học bao gồm các chất nhiệt đều chịu nhiệt, êpoxi, phenol tốc độ cắt được quyết định bởi năng lượng laser. Các vật liệu composit có thể dễ dàng cắt, nhưng vết cắt tạo ra có chất lượng cao hay không còn phụ thuộc vào tính nhạy về nhiệt của loại vật liệu kết hợp. - Cân bằng động lực cho các động cô chuyển động với các chi tiết yêu cầu độ chính xác cao không có lệch tâm của chi tiết chuyển động quay việc cân bằng, bằng cách cho bay hơi vật liệu thừa làm mất cân bằng chi tiết.
- Ngoài ra hiện nay còn có nhiều máy gia công vi laser cũng cho pheùp cắt ở kích thước rất nhỏ các loại vật liệu như: kim cương, thủy tinh, ceramic, polyme mềm mà các phương pháp khác khó gia công.