Kính thiên văn Hubble: Một đột phá trong quan sát thiên văn

MỤC LỤC

Các kính thiên văn trên thế giới

    Nếu như tại đây khách du lịch và người sử dụng kính thiên văn quang học thích thú ngắm nhìn bầu trời đầy sao rất ấn tượng vào ban đêm thì những nhà thiên văn học vô tuyến lại có thể quan sát được dấu tích của nguyên tử và phân tử. Kính viễn vọng không gian Hubble (tiếng Anh: Hubble Space Telescope, viết tắt HST) là một kính viễn vọng của NASA, mang tên của nhà thiên văn học Mỹ Edwin Powell Hubble (1889-1953), được đặt trong một quỹ đạo cách Trái đất khoảng 610 km. Kính viễn vọng Hubble được nghiên cứu từ thập niên 1970 và phóng lên không gian năm 1990, đã tạo ra một bước đột phá quan trọng trong quan sát thiên văn trong phổ quang học, tử ngoại và hồng ngoại cho thời kỳ này, nhờ vào ưu điểm là quan sát các thiên thể mà không bị ảnh hưởng bởi khí quyển Trái Đất.

    Là dự án liên kết của Đức, Mexico cùng đại học Florida, Mỹ và từ phía Instituto de Astrofísica de Canarias (IAC), dự án GTC là 1 dự án kính viễn vọng rất lớn với tổng chi phí là 180 triệu đô la. Từng nằm ở vị trí quán quân thế giới trước khi bị GTC soán ngôi, WM Keck Keck là chiếc kính viễn vọng đôi bao gồm kính Keck I và Keck II với độ mở ở mỗi chiếc là 10 mét ( nhỏ hơn GTC 0,4m).

    Hình ảnh chi tiết của mọi loại tinh vân, đặc biệt là những tinh vân đang phát tán  gần các thiên hà xoắn ốc.
    Hình ảnh chi tiết của mọi loại tinh vân, đặc biệt là những tinh vân đang phát tán gần các thiên hà xoắn ốc.

    Thông số kính thiên văn

    Các đặt trưng của kính thiên văn

    Đường kính D của vất kính càng lớn thì khả năng quan sát các thiên thể ở xa càng tốt. Tuy nhiên không thể tăng D mãi được; vì khi D quá lớn sẽ xảy ra sai lệch quang học; ảnh quan sát được không trung thực. Theo lý thuyết nhiễu xạ thì yêu cầu này thoã mãn khi vân sáng trung tâm của điểm này trùng với vân tối thứ nhất của điểm kia.

    Mắt người có thể phân biệt 2 điểm cách nhau 2’ nếu nhìn qua kính có độ phóng đại G và năng suất phân giải e thì góc nhìn được phóng đại lên là eG. Vậy độ phóng đại G cần thiết của kính để mắt phân biệt hai điểm cách nhau một khoảng bằng với khoảng. Vậy độ phóng đại thích hợp của kính khi quan sát bằng mắt có trị số bằng đường kính vật kính tính ra mm.

    Trong khi quan sát các hành tinh trong hệ mặt trời người ta thường dựng kớnh cú càng lớn để quan sỏt rừ cỏc chi tiết trên bề mặt của hành tinh. Đối với các thiên thể ở xa kính có D càng lớn chúng ta nhìn được những thiên thể càng mờ. Đối với thiên thể có như Mặt Trăng, hành tinh…Độ dọi sáng của ảnh qua kính tỉ lệ với quang thông của ánh sáng do thiên thể rọi qua vật kính và tỉ lệ nghịch với diện tích ảnh của thiên thể tại mặt phẳng tiêu của vật kính.

    +Với thị kính có tiêu cự cố định, vật kính có tiêu cự càng nhỏ thì thị trường càng lớn. +Với vật kính có tiêu cự cố định thì thị kính có tiêu cự càng lớn thị trường càng lớn. Ngoài ra khi chụp ảnh thiên văn người ta cịn đưa ra các khái niệm: Seeing, Transparency, Light pollution….

    Các kiểu đặt kính

    Vậy với một kính thiên văn thị kính có tiêu cự càng nhỏ thì ảnh càng lớn, nhưng. Vậy kính thiên văn có độ phóng đại càng lớn thì thị trường càng nhỏ. Cần lắp thêm mô tơ quay cùng vận tốc và ngược chiều quay Trái Đất để có thể xem Trái Đất đứng yên, không ảnh hưởng đến quan sát.

    Ngoài ra người ta còn lắp đặt kính thiên văn bằng cách đặt kính trên vệ tinh nhân tạo và phóng lên quỹ đạo Trái Đất.

    Chế tạo kính thiên văn khúc xạ đơn giản

    – Tháo kính mắt ra khỏi tay cầm, dùng giấy và băng dính cố định nó vào ống nhựa 20cm. – Dùng giấy và băng dính độn vào bên trong cái chuyển bậc 42-34 sao cho ống nhựa 20cm nói trên có thể di chuyển được trong nó. – Vẽ phác sơ đồ cấu tạo của kính ra giấy, ước tính thử chiều dài của thân ống nước.

    Ngắm thử và điều chỉnh lại (cưa hoặc nối các ống nhựa) nếu cần thiết.

    Quan sát Mặt Trăng bằng kính thiên văn khúc xạ tự chế

    Việc thu được ảnh một vật thể qua kính thiên văn tự chế tạo đòi hỏi phải qua một công đoạn xử lý ảnh do hình ảnh thu được khá là mờ. Nguyên nhân làm cho ảnh bị mờ đã được nêu ở phần các thông số của kính thiên văn. Việc xử lý ảnh cũng tương đối đơn giản thông quaphân tích hình ảnh bằng phép biến đổi wavelet.

    Tất cả các chương trình xử lý ảnh như registax, corel, photoshop… đều dựa trên một nguyên tắc chung đó là PBĐ wavelet1. 1 Để tìm hiểu thêm, đọc giả có thể tìm thấy về wavelet trong tạp chí khoa học của Trường đại học SP.

    THIÊN HÀ - NGÂN HÀ - QUASAR

    • THIÊN HÀ
      • Ngân Hà
        • QUASAR

          Dựa vào hình dạng bề ngoài của thiên hà, Hubble là người đầu tiên phân chia các thiên hà thành 3 loại: Thiên hà elip (E: Elip), thiên hà xoắn ốc (S: Spiral), thiên hà vô định hình( Irr: Irrigular).Đồng thời ông cũng đưa ra một sơ đồ tiến hóa của các thiên hà. Sự hình thành sao diễn ra với tốc độ rất chậm và rất ít vì thiếu đi các khí, bụi, các vật chất liên sao và nhân tố kích thích trong các thiên .Khá nhiều thiên hà elip chiếm rất nhiều các sao già loại II (population II), làm chúng có màu đỏ. – Ngoài các Thiên hà được phân loại theo hình dáng, người ta còn đưa vào khái niệm Thiên hà lùn (dwarf galaxy) (Kí hiệu d) .Đặc điểm của loại thiên hà này là kích thước rất nhỏ và mật độ cũng tương đối nhỏ so với các thiên hà khác.

          Ví dụ như tinh vân M31 thường được gọi là tinh vân tiên nữ (Andromeda) thực chất không phải một tinh vân theo định nghĩa trên mà là một thiên hà, thiên hà Andromeda là thiên hà lớn nhất trong cụm thiên hà địa phương của chúng ta. Như vậy: tinh vân là tập hợp những đám mây khí và bụi trong không gian được quan sát do chúng sáng hơn hoặc tối hơn nhiều nền bao quanh, trong khi đó thiên hà là tập hợp của vô số các sao có xen lẫn bụi và khí. Những nghiên cứu cho thấy Ngân hà đang di chuyển về phía Thiên hà Andromeda ở cạnh với tốc độ 130 km/s, và tùy theo sự di chuyển của cả hai phía, hai thiên hà có thể sẽ va chạm vào nhau trong khoảng năm hay sáu tỷ năm nữa.

          Tuy nhiên sự tước đoạt hấp dẫn của khí liên sao và bụi vốn tạo nên những cánh tay xoắn sẽ tạo ra một dải dài các ngôi sao, tương tự như điều quan sát thấy ở thiên hà NGC 250 hay Thiên hà Antennae. Dù Ngân hà chưa từng va chạm với một thiên hà khác có kích cỡ tương tự với Thiên hà Andromeda, bằng chứng về những vụ va chạm trong quá khứ của Ngân hà với các thiên hà lùn nhỏ hơn ngày càng có nhiều hơn. Cuối cùng, như một kết quả của sự giãn hấp dẫn, toàn bộ các ngôi sao hoặc sẽ rơi vào hố đen siêu lớn ở trung tâm các thiên hà, hoặc lao vào trong không gian liên thiên hà sâu thẳm sau các quá trình va chạm.

          Năm 1610, Galileo Galilei đã sử dụng một kính viễn vọng nghiên cứu dải sáng trên bầu trời đêm được gọi là Ngân hà và phát hiện ra rằng nó được hình thành từ số lượng vĩ đại những ngôi sao mờ. -Hệ Mặt Trời phải mất khoảng 226 triệu năm để hoàn thành một chu kỳ quay chung quanh tâm của dải Ngân Hà ("năm thiên hà") và như vậy nó đã hoàn thành khoảng 25 vòng quay chung quanh tâm dải Ngân Hà. – Dải Ngân Hà, thiên hà Andromeda (2,5 triệu năm ánh sáng) và thiên hà Triangulum (3 triệu năm ánh sáng) là các thành viên chính của nhóm Địa phương là một nhóm của khoảng 35 thiên hà có biên giới gần nhau; nhóm địa phương này là một phần của siêu nhóm Virgo (Thiên Bình).

          Các sao lùn khác quay quanh thiên hà của chúng ta là đám mây Magellan Nhỏ; sao lùn chính Canis; gần nhất là thiên hà sao lùn hình elíp Sagittarius; sao lùn Tiểu Hùng Tinh; sao lùn Sculptor, sao lùn Sextans, sao lùn Fornax và Sư Tử I. – - Hệ thống thiên hà vệ tinh của Ngân Hà gồm có thiên hà elip lùn Sagittarius, đám mây Magellan Nhỏ, đám mây Magellan Lớn, thiên hà lùn Đại Khuyển, thiên hà lùn Tiểu Hùng, thiên hà lùn Draco, thiên hà lùn Carina, thiên hà lùn Sextans, thiên hà lùn Sculptor, thiên hà lùn Fornax, Leo I, Leo II, và thiên hà lùn Đại Hùng.